Probiotics and glycemic control: A simplified interplay model for the pathways behind
Subject Areas :
Somayyeh Firouzi
1
1 - Department of Nutrition and dietetic, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
Received: 2018-03-07
Accepted : 2018-06-05
Published : 2018-06-01
Keywords:
Type 2 diabetes,
Glucose homeostasis,
Glycemic control,
Probiotics,
Abstract :
The link between gut microbiota composition, insulin resistance, and diabetes has been recently proposed. As such, the impact of probiotics on improving glycemic control has been reported recently. Although probiotics have attracted much interest as a complementary approach to improve glucose metabolism, the mechanisms underlying their actions remained to be determined. Hence, here we aim to review the mechanisms by which the probiotics might affect glycemic control. Probiotics improve glycemic control through diminishing fermentation of polysaccharides, suppressing inflammation, act as bile acid de-conjugate hydrolase, increase the bioavailability of Gliclazide drugs and changes in incretin secretion. However, the pathway behind the effect of probiotics on glycemic control is complex with many interplay interactions. The involvement of multiple mechanisms may explain the ambiguities in determining the exact mechanism that is behind this effect.
References:
Larsen N, Vogensen FK, van den Berg FWJ, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLOS One. 2010;5(2):e9085.
Caricilli AM, Picardi PK, de Abreu LL, et al. Gut microbiota is a key modulator of insulin resistance in TLR 2 knockout mice. PLOS Biology. 2011;9(12):e1001212.
Musso G, Gambino R, Cassader M. Obesity, diabetes, and gut microbiota. The hygiene hypothesis expanded? Diabetes Care. 2010;33(10):2277-2284.
Firouzi S, Barakatun-Nisak MY, Ismail A, Majid HA, Nor Azmi K. Role of probiotics in modulating glucose homeostasis: evidence from animal and human studies. International Journal of Food Sciences and Nutrition. 2013;64(6):780-6.
Laitinen K, Poussa T, Isolauri E. Probiotics and dietary counselling contribute to glucose regulation during and after pregnancy: a randomised controlled trial. British Journal of Nutrition. 2009;101(11):1679-1687.
Andreasen AS, Larsen N, Pedersen-Skovsgaard T, et al. Effects of Lactobacillus acidophilus NCFM on insulin sensitivity and the systemic inflammatory response in human subjects. British Journal of Nutrition. 2010;104(12):1831-1838.
Asemi Z, Zare Z, Shakeri H, Sabihi S-S, Esmaillzadeh A. Effect of multispecies probiotic supplements on metabolic profiles, hs-CRP, and oxidative stress in patients with type 2 diabetes. Annals of Nutrition and Metabolism. 2013;63(1-2):1-9.
Ivey KL, Hodgson JM, Kerr D a, Lewis JR, Thompson PL, Prince RL. The effects of probiotic bacteria on glycaemic control in overweight men and women: a randomised controlled trial. European Journal of Clinical Nutrition. 2014;68(4):447-52.
Ejtahed HS, Mohtadi Nia J, Homayouni Rad A, Niafar M, Asghari Jafarabadi M, Mofid V. The effects of probiotic and conventional yoghurt on diabetes markers and insulin resistance in type 2 diabetic patients: A randomized controlled clinical trial. Iranian Journal of Endocrinology & Metabolism. 2011;13(1):1-8.
Gobel RJ, Larsen N, Jakobsen M, Molgaard C, Michaelsen KF. Probiotics to obese adolescents; RCT examining the effects on inflammation and metabolic syndrome. Journal of Pediatric Gastroenterology and Nutrition. 2012;5(6):673-8.
Lindsay KL, Kennelly M, Culliton M, et al. Probiotics in obese pregnancy do not reduce maternal fasting glucose: a double-blind, placebo-controlled, randomized trial (probiotics in pregnancy study). The American Journal of Clinical Nutrition. 2014;99(6):1432-9.
Ruan Y, Sun J, He J, Chen F, Chen R, Chen H. Effect of probiotics on glycemic control: A systematic review and meta-analysis of randomized, controlled trials. PLOS One. 2015;10(7):e0132121.
Zarfeshani A, Khaza’ai H, Mohd Ali R, Hambali Z, Wahle KWJ, Mutalib MSA. Effect of Lactobacillus casei on the production of pro-inflammatory markers in Streptozotocin-induced diabetic rats. Probiotics Antimicrob Proteins. 2011;3(3-4):168-74.
Naito E, Yoshida Y, Makino K, et al. Beneficial effect of oral administration of Lactobacillus casei strain Shirota on insulin resistance in diet-induced obesity mice. Journal of Applied Microbiology. 2011;110:650-7.
Yadav H, Lee J, Lloyd J, Walter P, Rane S. Beneficial metabolic effects of a probiotic via Butyrate-induced GLP-1 hormone secretion. Journal of Biological Chemistry. 2013;288(35):25088-25097.
Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027-31.
Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol. 2011;11(2):98-107.
Pickup JC. Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care. 2004;27(3):813-23.
Valladares R, Sankar D, Li N, et al. Lactobacillus johnsonii N6. 2 mitigates the development of type 1 diabetes in BB-DP rats. PLOS One. 2010;5(5):e10507.
Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56(7):1761-72.
Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. Journal of Clinical Investigation. 2006;116(7):1793.
Vandanmagsar B, Youm Y-H, Ravussin A, et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nature Medicine. 2011;17(2):179-88.
Ding S, Chi MM, Scull BP, et al. High-fat diet: bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse. PLOS One. 2010;5(8):e12191.
Parnell JA, Reimer RA. Prebiotic fibres dose-dependently increase satiety hormones and alter Bacteroidetes and Firmicutes in lean and obese JCR:LA-cp rats. British Journal of Nutrition. 2012;107(4):601-13.
Escobedo G, López-Ortiz E, Torres-Castro I. Gut microbiota as a key player in triggering obesity, systemic inflammation and insulin resistance. Revista de Investigación Clínica. 2015;66(5):450-9.
Cani PD, Bibiloni R, Knauf C, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008;57(6):1470-81.
Cani PD, Possemiers S, Van de Wiele T, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut. 2009;58(8):1091-103.
Youssef-Elabd EM, McGee KC, Tripathi G, et al. Acute and chronic saturated fatty acid treatment as a key instigator of the TLR-mediated inflammatory response in human adipose tissue, in vitro. Journal of Nutritional Biochemistry. 2012;23(1):39-50.
Everard A, Cani PD. Diabetes, obesity and gut microbiota. Best Practice & Research: Clinical Gastroenterology. 2013;27(1):73-83.
Imani Fooladi AA, Mahmoodzadeh Hosseini H, Nourani MR, Khani S, Alavian SM. Probiotic as a novel treatment strategy against liver disease. Hepatitis Monthly. 2013;13(2):e7521.
Everard A, Matamoros S, Geurts L, Delzenne NM, Cani PD. Saccharomyces boulardii administration changes gut microbiota and reduces hepatic steatosis, low-grade inflammation, and fat mass in obese and type 2 diabetic db/db mice. mBio. 2014;5(3):e01011-14.
Bergman RN. Toward physiological understanding of glucose tolerance: Minimal-model approach. Diabetes. 1989;38(12):1512-1527.
Henriksen EJ. Bioactive food as dietary interventions for diabetes. Elsevier; 2013.
Opara EC, Abdel-Rahman E, Soliman S, et al. Depletion of total antioxidant capacity in type 2 diabetes. Metabolism. 1999;48(11):1414-1417.
Maritim AC, Sanders RA, Watkins JB. Diabetes, oxidative stress, and antioxidants: a review. Journal of Biochemical and Molecular Toxicology. 2003;17(1):24-38.
Uskova MA, Kravchenko L V. Antioxidant properties of lactic acid bacteria--probiotic and yogurt strains. Vopr Pitan. 2009;78(2):18-23.
Ejtahed HS, Mohtadi Nia J, Homayouni Rad A, Niafar M, Asghari Jafarabadi M, Mofid V. Probiotic yogurt improves antioxidant status in type 2 diabetic patients. Nutrition. 2012;28(5):539-43.
Asemi Z, Jazayeri S, Najafi M, et al. Effect of daily consumption of probiotic yogurt on oxidative stress in pregnant women: a randomized controlled clinical trial. Annals of Nutrition and Metabolism. 2012;60(1):62-8.
Lin M-Y, Yen C-L. Antioxidative ability of lactic acid bacteria. Journal of Agricultural and Food Chemistry. 1999;47(4):1460-1466.
Delzenne NM, Neyrinck AM, Cani PD. Modulation of the gut microbiota by nutrients with prebiotic properties: consequences for host health in the context of obesity and metabolic syndrome. Microb Cell Fact. 2011;10(Suppl 1):S10.
Zhou J, Martin RJ, Tulley RT, et al. Dietary resistant starch upregulates total GLP-1 and PYY in a sustained day-long manner through fermentation in rodents. American Journal of Physiology-Endocrinology and Metabolism. 2008;295(5):E1160-E1166.
Orskov C, Rabenhoj L, Wettergren A, Kofod H, Holst JJ. Tissue and Plasma Concentrations of Amidated and Glycine-Extended Glucagon-Like Peptide I in Humans. Diabetes. 1994;43(4):535-539.
Boushey RP, Yusta B, Drucker DJ. Glucagon-like peptide (GLP)-2 reduces chemotherapy-associated mortality and enhances cell survival in cells expressing a transfected GLP-2 receptor. Cancer Research. 2001;61(2):687-93.
Davie JR. Inhibition of histone deacetylase activity by butyrate. Journal of Nutrition. 2003;133(7 Suppl):2485S-2493S.
Tolhurst G, Heffron H, Lam Y, et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes. 2012;61(2):364-71.
Flint A, Raben A, Astrup A, Holst JJ. Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. Journal of Clinical Investigation. 1998;101(3):515-20.
Lee Y-S, Shin S, Shigihara T, et al. Glucagon-like peptide-1 gene therapy in obese diabetic mice results in long-term cure of diabetes by improving insulin sensitivity and reducing hepatic gluconeogenesis. Diabetes. 2007;56(6):1671-9.
Bergman EN. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiological Reviews. 1990;70(2):567-90.
Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480-4.
Samuel BS, Gordon JI. A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(26):10011-6.
Zhang H, DiBaise JK, Zuccolo A, et al. Human gut microbiota in obesity and after gastric bypass. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(7):2365.
Degirolamo C, Rainaldi S, Bovenga F, Murzilli S, Moschetta A. Microbiota modification with probiotics induces hepatic bile acid synthesis via downregulation of the Fxr-Fgf15 axis in mice. Cell Reports. 2014;7(1):12-8.
Pavlović N, Stankov K, Mikov M. Probiotics-interactions with bile acids and impact on cholesterol metabolism. Applied Biochemistry and Biotechnology. 2012;168(7):1880-95.
Mencarelli A, Distrutti E, Renga B, et al. Probiotics modulate intestinal expression of nuclear receptor and provide counter-regulatory signals to inflammation-driven adipose tissue activation. PLOS One. 2011;6(7):e22978.
Ma K, Saha PK, Chan L, Moore DD. Farnesoid X receptor is essential for normal glucose homeostasis. Journal of Clinical Investigation. 2006;116(4):1102-9.
Thomas C, Pellicciari R, Pruzanski M, Auwerx J, Schoonjans K. Targeting bile-acid signalling for metabolic diseases. Nature Reviews Drug Discovery. 2008;7(8):678-93.
Cariou B, van Harmelen K, Duran-Sandoval D, et al. The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice. Journal of Biological Chemistry. 2006;281(16):11039-49.
Parker HE, Wallis K, le Roux CW, Wong KY, Reimann F, Gribble FM. Molecular mechanisms underlying bile acid-stimulated glucagon-like peptide-1 secretion. British Journal of Pharmacology. 2012;165(2):414-23.
Al-Salami H, Butt G, Fawcett JP, Tucker IG, Golocorbin-Kon S, Mikov M. Probiotic treatment reduces blood glucose levels and increases systemic absorption of gliclazide in diabetic rats. European Journal of Drug Metabolism and Pharmacokinetics. 2008;33(2):101-106.