انتخاب پرتفوی چند منظوره فازی مبتنی بر مدل بازده مقطعی تحلیل پوششی داده ها در بورس اوراق بهادار تهران
محورهای موضوعی :
مهندسی مالی
فاضل محمدی نوده
1
,
ایوب احمدی موسی آبادی
2
*
,
مسعود اسدی
3
,
عباس بابایی
4
,
شعبان محمدی
5
*
1 - گروه مدیریت،دانشکده علوم انسانی، واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران.
2 - گروه مدیریت،دانشکده علوم انسانی، واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران.
3 - دانشجوی دکتری مهندسی مالی، دانشکده مدیریت و حسابداری، واحدرشت، دانشگاه آزاداسلامی، رشت، ایران
4 - دانشجوی دکتری مهندسی مالی، دانشکده مدیریت وحسابداری، واحدرشت، دانشگاه آزاداسلامی، رشت، ایران
5 - کارشناسی ارشد حسابداری، دانشکده شهید رجایی، دانشگاه فنی و حرفه ای استان خراسان، ایران
تاریخ دریافت : 1397/10/28
تاریخ پذیرش : 1398/01/17
تاریخ انتشار : 1398/10/01
کلید واژه:
الگوریتم کرم شب تاب,
پرتفوی فازی,
بازده مقطعی,
چهارچوب چندمنظوره,
چکیده مقاله :
مجموعه های چند منظوره فازی نیاز به داده های دقیق را جهت تصمیم گیری کاهش می دهند. تحلیل پوششی داده ها چارچوبی تئوریک برای تحلیل عملکرد و اندازه گیری کارایی است. مجموعه فازی باعث افزایش کاربرد تحلیل پوششی داده ها می گردد. سنجش کارایی شرکت ها با کمک تحلیل پوششی داده ها می تواند به عنوان راه کاری به سرمایه گذاران در انتخاب شرکت جهت سرمایه گذاری کمک نماید. در این پژوهش مشکل انتخاب پرتفوی فازی در یک چارچوب چند منظوره مورد بررسی قرار می گیرد. مدلی جامع برای انتخاب پرتفوی چند منظوره در محیط فازی با استفاده از مدل نیمه واریانس میانگین و مدل آنالیز توسعه اطلاعات با بازده مقطعی ارایه شده است. داده ها از 40 شرکت پذیرفته شده در بورس اوراق بهادار تهران و بازده فازی ذوزنقه ای از 40 ورقه بهادار و داده های مورد نیاز برای ورودی ها و خروجی تحلیل پوششی داده ها از صورت های مالی شرکت ها از ابتدای سال 1396 تا انتهای سال1396بدست آمد. 16پارامتر مالی مورد استفاده قرار گرفت. نسبت شارپ، مدل بازده مقطعی در چارچوب نسبت شارپ و الگوریتم کرم شب تاب چند منظوره برای حل مدل بهینه سازی سهام چند منظوره توسعه داده و استفاده گردید. تجزیه و تحلیل با نرم افزار متلب انجام شد. نتایج نشان داد که روش ارائه شده در این پژوهش برای انتخاب پرتفوی چند منظوره فازی نسبت به سایر روش ها مناسب تر بوده و برای تحلیل عملکرد، کارایی و به انتخاب شرکت جهت سرمایه گذاری نتایج بهتری را ارائه می دهد.
چکیده انگلیسی:
Fuzzy multifunctional sets reduce the need for accurate data for decision making. Data Envelopment Analysis is a theoretical framework for performance analysis and performance measurement. Fuzzy increases the application of data envelopment analysis. Measuring the performance of companies with the help of data envelopment analysis can help investors in choosing a company. In this paper, the problem of selecting fuzzy portfolios in a multipurpose framework is examined. A comprehensive model for selecting multi-purpose portfolios in fuzzy environment is presented using a semi-variance model and a model for analyzing information development with cross-sectional returns. Data from 40 companies accepted in Tehran Stock Exchange and trapezoidal returns of 40 sheets of securities and the data required for inputs and output of data envelopment analysis were obtained from financial statements of companies from the beginning of 1396 to the end of 1396. 16 financial parameters were used. Sharp ratio, cross-sectional return model in Sharp ratio and multi-purpose firefighting algorithm for solving multi-purpose stock optimization model was used. Analysis was done with MATLAB software. The results showed that the proposed method in this research is more suitable for selection of fuzzy multipurpose portfolio than other methods and provides better results for performance analysis, efficiency and company selection for investment.
منابع و مأخذ:
امیری، مقصود؛ مهسا محبوب قدسی.(1394). مدل برنامهریزی خطی فازی برای ﻣﺴﺌﻠﻪ اﻧﺘﺨﺎب ﺳﺒﺪ ﺳﻬﺎم بهینه، فصلنامهمهندسیمالیومدیریت اوراق بهادار ، مقاله 6، دوره 6، شماره 23، صفحه 105-118.
حسینی، سیدعلی اکبر؛ یوسف نجفی.(1391). تعیین ساختار بهینه سرمایه با استفاده از شاخصهای سنجش عملکرد مبتنی برارزش به کمک تحلیل پوششی دادهها (DEA)، مجله مهندسی مالی و مدیریت اوراق بهادار،شماره 12،صفحه39-59.
حاجیها، زهره؛ مونا قیلاوی.(1391).استفاده از تکنیک تحلیل پوششی دادهها برای سنجش کارایی شرکتهای تولیدی پذیرفته شده در بورس اوراق بهادار تهران با استفاده از مدل مبتنی بر گزارشگری مالی،فصلنامه مهندسی مالی و مدیریت اوراق بهادار،مقاله 6، دوره 3، شماره 12، صفحه 111-130.
رستمی،محمدرضا؛ محمود کلانتری بنجار؛ عادل بهزادی.(1394).گشتاورهای مراتب بالاتر در بهینهسازی سبد سهام در محیط فازی، فصلنامه مهندسی مالی و مدیریت اوراق بهادار، مقاله 3، دوره 6، شماره 24، صفحه 41-62.
سلیمی، محمد جواد؛ محمد تقی تقوی فرد؛ میرفیض فلاح شمس؛ هادی خواجه زاده دزفولی،(1397).بهینهیابی تکاملی چهارهدفه فازی و غیرفازی سبد سرمایهگذاری در بورس اوراق بهادار تهران،مقاله 1، دوره 9، شماره 36، صفحه 1-16.
محمودی محمد؛ حسین بدیعی؛ روح اله رضازاده،(1392). بررسی رابطه نسبتهای سودآوری با کارایی درموسسات آموزش عالی غیر دولتی با استفاده از تکنیک تحلیل پوششی دادهها(DEA)، فصلنامه مهندسی مالی و مدیریت اوراق بهادار، مقاله 1، دوره 4، شماره 16،، صفحه 1-22.
فلاح پور،سعید؛ پیرایش شیرازی نژاد،حسین.(1397). تشکیل پرتفوی سهام با استفاده از مدل تحلیل ممیز قطری درجه دو و وزن دهی بر اساس احتمال پسین، فصلنامه مهندسی مالی و مدیریت اوراق بهادار ، مقاله 5، دوره 9، شماره 34، صفحه 85-103.
فتحی،محمدرضا؛ امید فرجی؛ عمران کریمی جوقی.(1396). ارائه مدل ترکیبی مبتنی بر روش اولویت بندی فازی و کپراس جهت انتخاب سبد سهام در بورس اوراق بهادار تهران، فصلنامه مهندسی مالی و مدیریت اوراق بهادار ، مقاله 7، دوره 8، شماره 32، صفحه 129-149.
_||_
Anagnostopoulos K, Mamanis G (2011) Multiobjective evolutionary algorithms for complex portfolio optimization problems. Comput Manag Sci 8:259–279
Avkiran NK (2001) Investigating technical and scale efficiencies of Australian Universities through data envelopment analysis. Socio- Econ Plan Sci 35:57–80
Bacanin N, TubaM(2014) Firefly algorithm for cardinality constrained mean-variance portfolio optimization problem with entropy diversity constraint. Sci World J 2014:721521
Ballestero E (2005) Mean-semivariance efficient frontier: a downside risk model for portfolio selection. Appl Math Finance 12:1–15
Bermúdez JD, Segura JV, Vercher E (2012) A multi-objective genetic algorithm for cardinality constrained fuzzy portfolio selection. Fuzzy Sets Syst 188:16–26.
Branda M (2013) Diversification-consistent data envelopment analysis with general deviation measures. Eur J Oper Res 226:626–635
Carlsson C, Fullér R (2001) On possibilistic mean value and variance of fuzzy numbers. Fuzzy Sets Syst 122:315–326
Carlsson C, Fullér R, Majlender P (2002) A possibilistic approach to selecting portfolios with highest utility score. Fuzzy Sets Syst 131:13 21.
Charnes A, Cooper WW, Rhodes E (1978) Measuring the efficiency of decision making units. Eur J Oper Res 2:429–444
Chen W (2015) Artificial bee colony algorithm for constrained possibilistic portfolio optimization problem. Physica A 429:125–139
ChenW, Gai YX, Gupta P (2018) Efficiency evaluation of fuzzy portfolio in different risk measures viaDEA.Ann Oper Res 269:103–127
Chen W, Wang Y, Mehlawat MK (2018) A hybrid FA–SA algorithm for fuzzy portfolio selection with transaction costs. Ann Oper Res 269:129–147
Cura T (2009) Particle swarm optimization approach to portfolio optimization. Nonlinear Anal Real World Appl 10:2396–2406
Doyle JR, Green R (1994) Efficiency and cross-efficiency in data envelopment analysis: derivatives, meanings and uses. J Oper Res Soc 45:567–578
Fister I, Fister I Jr, Yang XS, Brest J (2013) A comprehensive review of firefly algorithms. Swarm Evol Comput 13:34–46
Fried HO, LovellCAK, Schmidt SS, Yaisawarng S (2002) Accounting for environmental effects and statistical noise in data envelopment analysis. J Prod Anal 17:157–174
Gouveia MDC, Neves ED, Dias LC, Antunes CH (2017) Performance evaluation of Portuguese mutual fund portfolios using the valuebased
DEA method. J Oper Res Soc 3:1–13
Grigorian DA, Manole V (2006) Determinants of commercial bank performance in transition:an application of data envelopment analysis.Comp Econ Stud48:497–522
Grootveld H, Hallerbach W (1999) Variance vs downside risk: Is there really that much difference? Eur J Oper Res 114:304–319
Gupta P, Mehlawat MK, Saxena A (2008) Asset portfolio optimization using fuzzy mathematical programming. Inf Sci 178:1734–1755
Hu JL, Kao CH (2007) Efficient energy-saving targets for APEC economies. Energy Policy 35:373–382
JensenMC(1968) The performance of mutual funds in the period 1945– 1964. J Finance 23:389–416
Joro T, Na P (2006) Portfolio performance evaluation in a meanvariance- skewness framework. Eur J Oper Res 175:446–461
Konno H, Yamazaki H (1991) Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market.Manag Sci 37:519–531
Konno, H, ShirakawaH,YamazakiH(1993)Amean-absolute deviationskewness portfolio optimizationmodel. AnnOperRes 45:205–220
Krink T, Paterlini S (2011) Multiobjective optimization using differential evolution for real-world portfolio optimization. Comput Manag Sci 8:157–179
Liagkouras K, Metaxiotis K (2018) Multi-period mean-variance fuzzy portfolio optimization model with transaction costs. Eng Appl Artif Intell 67:260–269
Lim S, Oh KW, Zhu J (2014) Use of DEA cross-efficiency evaluation in portfolio selection: an application to Korean stock market. Eur J Oper Res 236:361–368
Liu WB, Zhou ZB, Liu DB, Xiao HL (2015) Estimation of portfolio efficiency via DEA. Omega 52:107–118
Liu YJ, Zhang WG (2013) Fuzzy portfolio optimization model under real constraints. Insur Math Econ 53:704–711
Liu YJ, ZhangWG (2015) A multi-period fuzzy portfolio optimization model with minimum transaction lots. Eur J Oper Res 242:933– 941
LwinK, QuR, KendallG (2014) Alearning-guidedmulti-objective evolutionary algorithm for constrained portfolio optimization. Appl Soft Comput 24:757–772
Markowitz H (1952) Portfolio selection. J Finance 7:77–91
Markowitz H (1959) Portfolio selection: efficient diversification of investments. Wiley, New York
Mashayekhi Z, Omrani H (2016) An integrated multi-objective Markowitz-DEA cross-efficiency model with fuzzy returns for portfolio selection problem. Appl Soft Comput 38:1–9
Mehlawat MK (2016) Credibilistic mean-entropy models for multiperiod portfolio selection with multi-choice aspiration levels. Inf Sci 345:9–26
Murthi BPS, Choi YK, Desai P (1997) Efficiency of mutual funds and portfolio performance measurement: a non-parametric approach. Eur J Oper Res 98:408–418
Ogryczak O, Ruszczynski A (1999) From stochastic dominance meanrisk model: semideviation as riskmeasure. Eur J Oper Res 116:33–50
Ruiz JL, Sirvent I (2017) Fuzzy cross-efficiency evaluation: a possibility approach. Fuzzy Optim Decis Mak 16:1–16
Saborido R, Ruiz AB, Bermudezc JD, Vercher E, Luque M (2016) Evolutionary multi-objective optimization algorithms for fuzzy portfolio selection. Appl Soft Comput 39:48–63
SaeidifarA, PashaE(2009) The possibilistic moments of fuzzy numbers and their applications. J Comput Appl Math 223:1028–1042
Sharpe WF (1966) Mutual fund performance. J Bus 39:119–138
Shaw DX, Liu S, Kopman L (2008) Lagrangian relaxation procedure for cardinality-constrained portfolio optimization. Optim Method Softw 23:411–420
Sherman HD (1984) Hospital efficiency measurement and evaluation, empirical test of a new technique. Med Care 22:922–938
Speranza MG (1993) Linear programming models for portfolio optimization. J Finance 14:107–123.
Tanaka,H., and P. Guo,(1999) "Portfolio selection based on upper and lower exponential possibility distributions," European Journal of Operational Research, vol. 111, pp. - 121 111.
Tarnaud AC, Leleu H (2017) Portfolio analysis with DEA: prior to choosing a model. Omega 75:57–76
Tofallis C (1996) Improving discernment in DEA using profiling. Omega 24:361–364
Vercher E, Bermúdez JD (2015) Portfolio optimization using a credibility mean-absolute semi-deviation model. Expert Syst Appl 42:7121–7131
Wang B, Wang S, Watada J (2011) Fuzzy portfolio selection models with value-at-risk. IEEE Trans Fuzzy Syst 19:758–769
Yang XS (2008) Nature-inspired metaheuristic algorithms. Luniver Press, London
Yang XS, He X (2013) Firefly algorithm: recent advances and applications. Int J Swarm Intell 1:36–50
Zadeh LA (1965) Fuzzy set. Inf Control 8:338–353
ZhangWG, Liu YJ, Xu WJ (2012) A possibilistic mean-semi variance entropy model for multi-period portfolio selection with transaction costs. Eur J Oper Res 222:341–349
Zhou ZB, Jin QY, Xiao HL,Wu Q, LiuWB (2018) Estimation of cardinality constrained portfolio efficiency via segmented DEA.Omega 76:28–37
Zhou ZB, Liu XH, Xiao HL, Wu SJ, Liu YY (2018) A DEA-based MOEA/D algorithm for portfolio optimization. Clust Comput 4:1–10
Zhou ZB, Xiao HL, Jin QY, LiuWB (2018) DEA frontier improvement and portfolio rebalancing: an application of china mutual funds on considering sustainability information disclosure. Eur J Oper Res 269:111–131.