بسط محرکهای زمینهای فیزیک مالی جهت اثربخشی نوروفایننس در منطق تصمیمگیرندگان مالی: جستاری بر ارزشیابی مهارتی DOPS
محورهای موضوعی : مهندسی مالیوحید میرزائی 1 , محمدرضا عبدلی 2 , نسرین صالحی 3 , حسن ولیان 4
1 - دانشجوی دکتری، گروه حسابداری، واحد شاهرود، دانشگاه آزاد اسلامی، شاهرود ایران
2 - دانشیار گروه حسابداری، واحد شاهرود، دانشگاه آزاد اسلامی، شاهرود، ایران
3 - دانشکده علوم پایه، واحد شاهرود، دانشگاه آزاد اسلامی، شاهرود، ایران
4 - استادیار، گروه حسابداری، واحد شاهرود، دانشگاه آزاد اسلامی، شاهرود، ایران
کلید واژه: نوروفایننس, فیزیک مالی, ارزشیابی مهارتی,
چکیده مقاله :
هدف این مطالعه بسط محرکهای زمینهای فیزیک مالی جهت اثربخشی نوروفایننس در منطق تصمیمگیرندگان مالی میباشد. فرآیند اجرای این مطالعه به لحاظ جمعآوری دادهها ترکیبی بود. به طوریکه در بخش کیفی از طریق غربالگری سیستماتیک نسبت به شناسایی محرکهای زمینهای نوروفایننس در تصمیمگیریهای مالی اقدام شد و سپس براساس طرح پیش آزمون و پس آزمون، نسبت، از طریق تحلیل واریانس تفاوت بین رویکردهای تحلیلگران مالی مشخص گردید. در واقع باهدف تفکیک مشارکتکنندگان در قالب دو گروه آزمایش و کنترل تلاش شد تا تفاوت رویکردهای تحلیلگران مالی در تصمیمگیری مشخص گردد. نتایج مطالعه نشان داد، گروه آزمایش که تحت تأثیر ارزشیابی مهارتی پیشرانهای شناسایی شده قرار گرفتهاند، در هر دو سناریوی تصمیمگیری تحلیلگران، از ضریب بالاتری نسبت به گروه کنترل برخوردار هستند. همچنین مشخص گردید، گروه آزمایش که تحت تأثیر ارزشیابی مهارتی DOPS براساس پیشرانهای زمینهای شناسایی شده قرار گرفتهاند، در سناریوی تصمیمگیری نوسان ارزش منصفانه مطلوبیت بالاتری نسبت به سناریوی تصمیمگیری محافظهکارانه دارد. در حالیکه میانگین گروه کنترل دقیقاً برعکس گروه آزمایش است.
The purpose of this research is expanding the ground drivers of financial physics for the neurofinance effectiveness in the logic of financial decision makers. The implementation process of this study was mixed in terms of data collection. So, in the qualitative part, through a systematic screening, the background drivers of neurofinance in financial decisions were identified, and then, based on the pre-test and post-test plan, the difference between the approaches of financial analysts was determined through variance analysis. The results of the study showed that the experimental group, which was influenced by the skill evaluation of the identified drivers, has a higher coefficient than the control group in both decision-making scenarios of the analysts. It was also found that the experimental group, which was influenced by the DOPS skill evaluation based on the identified background drivers, has a higher favorability in the fair value fluctuation decision scenario than the conservative decision scenario. While the average of the control group is exactly the opposite of the experimental group.
_|1) حداد، سیما.، طباطبایی، سیدمحمود. (1396). کاربرد نوروفایننس درتصميمات مالی و بهره گيري از فرصتهاي سرمایهگذاري، فصلنامه روانشناسی و علوم رفتاری در ایران، 12(2): 1-15.
2) علیمرادی، محمد.، علیاحمدی، سعید.، فروغی، داریوش. (1399). تاثیر سطح خوشبینی و ریسکپذیری تصمیمگیرندگان بر تصمیمهای فروش سرمایهگذاری با تاکید بر حسابداری ارزش منصفانه، حسابداری مالی، 12(۴۵): ۱-۲۹
3) موسیزاده، عبداله.، خانمحمدی، محمدحامد. (1401). اثربخشی مدل مالی عصبی بر مبنای سنجش هورمون تستوسترون بر نگرش و تصمیمگیری سرمایهگذاران در بورس اوراق بهادار تهران، دانش مالی تحلیل اوراق بهادار، 15(53): 161-172.
4) Alimoradi M, Aliahmadi S, Foroghi D. The Effect of Optimism and Risk seeking Level of Managers on Investment Selling Decisions with Emphasis on Fair Value Accounting, Financial Accounting Quarterly, 12(45): 1-29. (In Persian)
5) Ardalan, K. (2018). Neurofinance versus the efficient markets hypothesis, Global Finance Journal, 35(1): 170-176. https://doi.org/10.1016/j.gfj.2017.10.005
6) Dickhaut, J., Basu. S., Mc Cabe, K., and Waymire, C. (2010). Neuroaccounting: Consilience between the Biologically Erolved Vrain and Culturally Evolved Accounting principles. Accounting Horizons; 24(2): 221-255.
7) Gatta, F., Di Cola, V, C., Giampaolo, F., Piccialli, F., Cuomo, S. (2023). Meshless methods for American option pricing through Physics-Informed Neural Networks, Engineering Analysis with Boundary Elements, 151(9): 68-82. https://doi.org/10.1016/j.enganabound.2023.02.040
8) Green, K.Y. (2015). Can Fair Value Accounting Create a Cognitive Bias? The Effects of Recognized Level 3 Fair Value on Manager Selling Decisions. https://scholarscompass.vcu.Edu/cgi/viewcontent.cgi?Article =4717&context=etd
9) Hadad, S., Tabatabayee, S, M. (2017). The use of neurofinance in financial decisions and taking advantage of investment opportunities, Iranian Journal of Psychology and Behavioral Sciences, 12(2): 1-15. (In Persian)
10) Haven, E, E. (2002). A discussion on embedding the Black–Scholes option pricing model in a quantum physics setting, Physica A: Statistical Mechanics and its Applications, 304(3/4): 507-524. https://doi.org/10.1016/S0378-4371(01)00568-4
11) Huang, Z, F., Solomon, S. (2002). Stochastic multiplicative processes for financial markets, Physica A: Statistical Mechanics and its Applications, 306(1): 412-422. https://doi.org/10.1016/S0378-4371(02)00519-8
12) Jovanovic, F., Mantegna, R, N., Schinckus, Ch. (2019). When financial economics influences physics: The role of Econophysics, International Review of Financial Analysis, 65(2): 37-57. https://doi.org/10.1016/j.irfa.2019.101378
13) LeRoy, S, F., Porter, R, D. (1999). The present-value relation: Tests based on implied variance bounds, Econometrica, 49(1): 555-574
14) Lin, Ch., Chen, Ch, Sh., Chen, A, P. (2018). Using intelligent computing and data stream mining for behavioral finance associated with market profile and financial physics, Applied Soft Computing, 68(1): 51-89. https://doi.org/10.1016/j.asoc.2017.08.008
15) Mandelbrot, B. (1982). The Fractal Geometry of Nature (W.H. Freeman, San Francisco)
16) Miyamoto, K. (2022). Quantum algorithm for calculating risk contributions in a credit portfolio, EPJ Quantum Technology, 9(32): 554-578. https://doi.org/10.1140/epjqt/s40507-022-00153-y
17) Mousazadeh, A., Khanmohammadi, M. H. (2022). The effectiveness of neural financial model based on testosterone measurement on the attitude and decision of investors in Tehran Stock Exchange. Financial Knowledge of Securities Analysis, 15(53): 161-172. (In Persian)
18) Orús, R., Mugel, S., Lizaso, E. (2019). Quantum computing for finance: Overview and prospects, Reviews in Physics, 4(6): 653-688. https://doi.org/10.1016/j.revip.2019.100028
19) Pessa, A, B., Pec, M., Ribeiro, H, V. (2023). Age and market capitalization drive large price variations of cryptocurrencies, Physics and Society, 13(5): 33-51. https://doi.org/10.48550/arXiv.2302.12319
20) Qiu, Y., Liu, R., Lee, R. (2021). The Design and Implementation of Quantum Finance-based Hybrid Deep Reinforcement Learning Portfolio Investment System, Journal of Physics: Conference Series, 3(8): 55-74. https://doi.org/10.1088/1742-6596/1828/1/012011
21) Samuelson, P, A. (1947). Foundations of Economic Analysis (Harvard University Press, Cambridge MA.
22) Shiller, R, J. (1994). Do stock prices move too much to be justified by subsequent changes in dividends?, American Economic Review, 71(1): 421-436
23) Srivastava, M., Sharma, G.D. and Srivastava, A.K. (2019). Human brain and financial behavior: a neurofinance perspective, International Journal of Ethics and Systems, 35(4): 485-503. https://doi.org/10.1108/IJOES-02-2019-0036
24) Tang, Y., Yan, J., Hu, G., Zhang, B., Zhou, J. (2022). Recent progress and perspectives on quantum computing for finance, Service Oriented Computing and Applications, 16(1): 227-229. https://doi.org/10.1007/s11761-022-00351-7
25) Wang, Y., Zheng, Sh., Zhang, W., Wang, G., Wang, J. (2018). Fuzzy entropy complexity and multifractal behavior of statistical physics financial dynamics, Physica A: Statistical Mechanics and its Applications, 506(15): 486-498. https://doi.org/10.1016/j.physa.2018.04.086
26) Wilkens, S., Moorhouse, J. (2023). Quantum computing for financial risk measurement, Quantum Information Processing, 22(4): 51-79. https://doi.org/10.1007/s11128-022-03777-2
27) Yeşiltaş, Ö. (2023). The Black–Scholes equation in finance: Quantum mechanical approaches, Physica A: Statistical Mechanics and its Applications, 623(2): 110-134. https://doi.org/10.1016/j.physa.2023.128909
|_