شناسایی، طبقهبندی و اولویتبندی ریسکهای اوراق گام (گواهی اعتبار مولد) با رویکرد مدلسازی چند معیاره فازی
شناسایی، طبقهبندی و اولویتبندی ریسکهای اوراق گام (گواهی اعتبار مولد) با رویکرد مدلسازی چند معیاره فازی
محورهای موضوعی : مهندسی مالی
محمدرضا حاضری یزدی 1 * , حسین شیرمردی احمدآباد 2
1 - مرکز برنامه و بودجه و مالی اسلامی/دانشکده مدیریت و برنامه ریزی راهبردی/دانشگاه جامع امام حسین/تهران/ایران
2 - مرکز برنامه و بودجه و مالی اسلامی/دانشکده مدیریت و برنامه ریزی راهبردی/دانشگاه جامع امام حسین/تهران/ایران
کلید واژه: تأمین مالی, صکوک, اوراق گام, اوراق گواهی اعتبار مولد, تامین مالی زنجیره ارزش,
چکیده مقاله :
گواهی اعتبار مولد (گام) یکی از نوآوریهای جدید نظام پولی و مالی کشور جهت تأمین مالی واحدهای تولیدی محسوب میشود که میتواند دسترسی واحدهای تولیدی به سرمایه در گردش را ارتقا بخشد، و باعث توسعه و رونق تولید این واحدها شود. این اوراق با بهرهمندی از ظرفیت بخش خصوصی کشور که در قالب زنجیرههای تأمین تولید قرار دارند و با برخورداری از ضمانت بانکها و مؤسسات اعتباری، زمینه تأمین منابع موردنیاز سرمایه در گردش را فراهم خواهد کرد. در این مقاله ابتدا بر اساس روش تحلیلی-توصیفی و با استفاده از منابع کتابخانهای ریسکهای اوراق گام برای هر یک از ارکان درگیر در ساختار این اوراق شناسایی و در قالب دو طبقه کلی بازار اولیه و بازار ثانویه تقسیم شده اند و سپس با روش FUZZY TOPSIS به اولویتبندی ریسکهای شناسایی شده پرداخته شد.یافتههای تحقیق نشان میدهد که از میان انواع مختلف ریسک، در بازار اولیه ریسک اعتبارسنجی متعهد توسط بانک ، و در بازار ثانویه، ریسک تورم، ریسک نوسانات نرخ ارز و ریسک نرخ بهره به ترتیب ریسکهای مهم اوراق گام هستند.
The productive credit certificate (GAM) is one of the new innovations of the country's monetary and financial system for financing production units, which can improve the access of production units to working capital, and cause the development and prosperity of production of these units. By benefiting from the capacity of the country's private sector, which are in the form of production supply chains, and with the guarantee of banks and credit institutions, these bonds will provide the necessary sources of working capital.In this article, based on the analytical-descriptive method and using library sources, the risks of GAM bonds have been identified for each of the elements involved in the structure of these bonds and divided into two general categories: primary market and secondary market, and then using the FUZZY TOPSIS method. The identified risks were prioritized.The findings of the research show that among the different types of risk, in the primary market, the risk of validation committed by the bank, and in the secondary market, the risk of inflation, the risk of exchange rate fluctuations, and the risk of interest rate are the important risks of GAM bonds, respectively.
_|1. Adam, Nathif J, Thomas, Abdulkader (2020), Islamic Bonds: Your Guide to Issuing, Structuring and Investing in Sukuk, Euromoney Books, London
2. Arsalan Tariq, Ali., and Dar, Humayon, )2007(, Risks of Sukukstructures: Implications for resource mobilization, Thunderbird International Business Review, Vol 49 (2), 223 - 203
3. Beck, T., Demirgüç-Kunt, A., & Merrouche, O. (2013). Islamic vs. conventional banking: business model, efficiency and stability. Journal of Banking and Finance, 37, 433-447.
4. Chapra, M. U. (2008). The global financial crisis: can Islamic finance help minimize the severity and frequency of such a crisis in the future? Conference Paper presented at the Forum on the Global Financial Crisis at the Islamic Development Bank.
5. Crouhy, Michel, Galai, Dan & Mark, Robert, )2020(, Essentials of Risk management, McGraw Hill.
6. Deng, S., Gu, C., Cai, G., & Li, Y. (2018). Financing Multiple Heterogeneous Suppliers in Assembly Systems: Buyer Finance vs. Bank Finance. Manufacturing & Service Operations Management, 20(1), 53-69.
7. Devalkar, S. K., & Krishnan, H. (2019). The Impact of Working Capital Financing Costs on the Efficiency of Trade Credit. Production and Operations Management, 28(4), 878-889.
8. Eugene F. Brigham and Phillip R. Daves, (2019), Intermediate Financial Management, Cengage Learning, page45
9. fulfillment of the requirements for the degree of Masters of Science at Loughborough University, UK.
10. Hasan, M., & Dridi. J. (2011). The effect of global financial crisis on islamic and conventional banks: a comparative study. IMF Working Paper, WP/10/201.
11. Hassan, M. Kabir., Andrea, Paltrinieri., Dreassi, Alberto., Miani, Stefano., & Sclip, Alex. (2017). “The determinants of co-movement dynamics between sukuk and conventional bonds”. The Quarterly Review of Economics and Finance, Volume 68, May 2018, Pages 73-84.
12. Hofmann, E, johnson, M, (2016). “Guest editorial: supply chain finance – some conceptual thoughts reloaded, Distribution & Logistics Management, Vol. 46 No.4.
13. Hofmann, E., Strewe, U. M., & Bosia, N. (2017). Supply Chain Finance and Blockchain Technology: The Case of Reverse Securitisation. Springer
14. Merriam-Webster, (2016), The Merriam-Webster Dictionary, Merriam-Webster, Inc Publisher.
15. Nechi, Houcem Smaoui Salem. (2017). “Does Sukuk Market Development Spur Economic Growth?” Research in International Business and Finance, Volume 41, October 2017, Pages 136-147.
16. Tariq, Ali Arsalan (2004), Managing Financial Risks of Sukuk Structurs, A dissertation submitted in partial fulfillment of the requirements for the degree of Masters of Science at Loughborough University, UK.
17. Tate, W., Bals, L., & Ellram, L. (Eds.). (2018). Supply Chain Finance: Risk Management, Resilience and Supplier Management. Kogan Page Publishers.
18. Uluyol, B. (2021). A comprehensive empirical and theoretical literature survey of Islamic bonds (sukuk). Journal of Sustainable Finance & Investment, 1-23.
1. Ahangar, Nooralezadeh, Norouz, Darabi. (1401). Presenting the causal model of sukuk risks in Iran. Financial knowledge of securities analysis, 15(53), 123-137.
2. Irvani, Kordloi, Rahnema Rudpashti, Yazdanian. (1400). Risk modeling of financing structure according to probabilistic decision theory through ANP. Financial Engineering and Securities Management, 12(47), 368-389.
3. Financing the country. The Bimonthly Journal of Economics, 79 (158), 13-27.
4. Touhidi, Mohammad (2016), "An analysis of asset-backed sukuk and asset-based sukuk" Securities and Exchange Organization, Center for Research, Development and Islamic Studies, Department of Markets and Financial Instruments
5. Jafari, Nilofar and Gholamali Mantazar. (2017). Using the fuzzy Delphi method to determine the country's tax policies. Journal of Economic Research 8: 91-114.
6. Rai, Reza and Saeedi, Ali, (2019), Fundamentals of Financial Engineering and Risk Management, Tehran: Organization for the Study and Compilation of University Humanities Books, Tehran University, School of Management.
7. Zamanpour, Zanjedar, Davodi Nasr. (1400). Identifying and ranking factors affecting stock portfolio optimization with fuzzy network analysis approach. Financial Engineering and Securities Management, 12(47), 210-236.
8. Shabani-Vernami, Dehekhani, Khozin, Naderian, Arash. (2017). Designing a comprehensive model for identifying and rating the risks of Islamic securities. Financial Management Strategy, 23(6), 61-87.
9. Shirmardi, Hossein, Fazelian Mohsen, Akhroi, Amir Hossein, (2012), Identification and prioritization of oil precursor risks with the approach of fuzzy hierarchical analysis, scientific-research bimonthly, Iran Economic Journals, Vol. 19, Spring and Summer 2012, 141 -168
10. Talebi, Mohammad, Rahimi, Mohammad, 2019, Identifying, classifying and prioritizing the risks of leased securities, bi-quarterly scientific-research journal, Iran Economic Journals, Vol. 18, Fall and Winter 2011, 77-103
11. Tariq, Arslan (2018), Financial Risk Management of Sukuk Structures, translated by Mustafa Zeh Tabian, Tehran, Imam Sadiq University (AS)
12. Alinejad Mehrabani, Farhad (2018). Product credit certificates: necessity and a new experience in the system
13. Mohammadi, Ali, Amir Abbas Saminia and Ehsan Jovanmardi, 2014, the application of combination of DMATEL, network analysis and TOPSIS in prioritizing the investment portfolio. Financial Engineering and Securities Management Quarterly (24): 15-40
14. Mokhtari, Morteza, Seyed Kamil Tayibi and Javad Mir Mohammad Sadeghi. 1395 Prioritization of investment in the service sector by TOPSIS fuzzy decision-making method, case study: Art organization. Economic Research Quarterly (Sustainable Growth and Development) 16(1): 40-121
15. Mousaviyan, Seyyed Abbas (2012), Islamic Financial Instruments (Sukuk), Tehran: Research Institute of Islamic Culture and Thought, p. 343
16. Maithami, Hossein (2018) Jurisprudential-legal aspects of Oraq Gam. Bimonthly Journal of Economics, 79 (158), 45-65
17. Maythami, Hossein, and Zamanzadeh, Hamid (2019). Value chain financing using step bonds: nature, function and Shariah solutions. Two scientific quarterly journals of Islamic financial research, research paper, 9th year, 2nd issue (81 consecutive), pp. 470-507
18. Nazarpour, Mohammad Naghi; and Lotfinia, Yahya (2012). Designing production support documents based on cash subsidies paid to the people. Islamic Finance Research Quarterly, 1 (2), 17-34
19. Nazarpour, Mohammad Naghi, & Sadraei. (2016). Identifying and rating the risks of Islamic treasury documents in the Iranian securities market. Islamic Financial Research, 6(2), 133-166.
20. Nazarpour, Mohammad Naghi, Fazelian, & Momeninijad. (2013). Presenting the ideal financing model for Iran's oil industry based on Istisnaa sukuk and rating its risks using the hierarchical analysis method. Islamic Financial Research, 3(2), 65-96.
21. Hadian, Mehdi (2018). Financial engineering of the company's credit crunch. Bimonthly Journal of Economics, 79 (158), 65-92
22. Hemmati, Abdul Naser (2018). The Central Bank's move towards restoring economic stability. The Bimonthly Journal of Economics, 79 (158), 2-11
|_