ارزیابی و اعتبارسنجی معماری بهینه یادگیری عمیق در پیش بینی قیمت سهام (رویکرد الگوریتم حافظه کوتاه مدت ماندگار LSTM )
محورهای موضوعی : مهندسی مالیامیر شریف فر 1 , مریم خلیلی عراقی 2 , ایمان رئیسی وانانی 3 , میر فیض فلاح 4
1 - دانشجوی دکتری، گروه مدیریت مالی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 - استادیار، گروه مدیریت بازرگانی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
3 - گروه مدیریت صنعتی، دانشکده مدیریت و حسابداری، دانشگاه علامه طباطبائی، تهران، ایران.
4 - گروه مدیریت مالی، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران و عضو گروه پژوهشی مخاطرات مالی نوین
کلید واژه: پیشبینی قیمت سهام, یادگیری عمیق, حافظه کوتاهمدت ماندگار LSTM, شبکه عصبی بازگشتی RNN,
چکیده مقاله :
امروزه انواع مدلهای هوش مصنوعی جایگاه خود را در محاسبات و پیشبینیهای بازارهای مالی تثبیت کردهاند؛ در این میان معماریهای مبتنی بر یادگیری عمیق که خود براساس الگوریتمهای یادگیری ماشینی میباشند، از طریق رفع ضعفهای مدلهای سنتی شبکه عصبی در خصوص پیش-بینی ساختارهای دینامیک، مورد توجه قرار گرفتهاند. مهمترین مزیت الگوریتمهای یادگیری عمیق نسبت به مدلهای سنتی شبکه عصبی، استخراج خودکار ویژگیهای مناسب از ورودیهای خام می-باشد که از آن برای روند یادگیری مدل استفاده میکند؛ به عبارتی الگوریتمهای این روش از چندین لایهی پردازش اطلاعات و به ویژه اطلاعات غیرخطی بهره میبرند تا بهترین ویژگیهای مناسب را از ورودی خام استخراج نمایند. در پژوهش حاضر توانایی معماریهای الگوریتم حافظه کوتاهمدت ماندگار (LSTM) جهت پیش-بینی قیمت سهام مورد بررسی قرار گرفته است؛ علاوه بر این، ضمن طبقهبندی عوامل موثر بر قیمت سهام، مولفههای نشاندهنده معاملات سهامداران حقیقی و حقوقی به عنوان عاملی اثرگذار بر قیمت سهام معرفی و بررسی شده است. برای اجرای مدل از سه گروه دادههای قیمتی، شاخصهای تکنیکال و معاملات سهامداران حقیقی و حقوقی استفاده شده است. نتایج تحقیق نشان از عملکرد بهتر معماری LSTM همراه با لایه Drop Out نسبت به مدل ساده آن و همچنین مدل RNN دارد.
Forecasting stock prices plays an important role in setting a trading strategy or determining the appropriate timing for buying or selling a stock. Deep Learning (DL) is a type of Artificial Neural Network (ANN) that consists of multiple processing layers and enables high-level abstraction to model data. The key advantage of DL models is extracting the good features of input data automatically using a general-purpose learning procedure which is suitable for dynamic time series such as stock price.In this research the ability of Long Short-Term Memory (LSTM) to predict the stock price is studied; moreover, the factors that have significant effects on the stock price is classified and legal and natural person trading is introduced as an important factor which has influence on the stock price. Price data, technical indexes and legal and natural person trading is used as an input data for running the model. The results obtained from LSTM with Dropout layer are better and more stable than simple form of LSTM and RNN models.
_||_