پیشبینی قیمت سهام در بورس اوراق بهادار تهران با استفاده از مدل شبکه عصبی مصنوعی(ANN) و مدل خودرگرسیون میانگین متحرک انباشته (ARIMA) : مطالعه موردی دو شرکت دارویی فعال بورس اوراق بهادار
محورهای موضوعی :
مهندسی مالی
احمد چگنی
1
,
عزیز گرد
2
*
1 - گروه حسابداری، دانشکده مدیریت و حسابداری، تهران،واحد غرب، دانشگاه پیام نور، تهران، ایران
2 - گروه حسابداری، دانشکده مدیریت و حسابداری،تهران، واحدغرب، دانشگاه پیام نور، تهران، ایران
تاریخ دریافت : 1398/10/15
تاریخ پذیرش : 1398/12/18
تاریخ انتشار : 1399/07/01
کلید واژه:
قیمت سهام,
شبکه عصبی مصنوعی,
مدل پیش بینی,
مدل ARIMA,
چکیده مقاله :
در این تحقیق به مقایسه کارایی دو روش پیشبینی شبکه عصبی مصنوعی (ANN) و روش سنتی خودرگرسیون میانگین متحرک انباشته (ARIMA) در پیشبینی قیمت سهام در بازار سهام ایران پرداخته شده است. بدین منظور 2 شرکت دارویی البرزدارو و جامدارو انتخاب شده و مدل ARIMA و مدل شبکه عصبی مصنوعی برای هر دو شرکت تخمین زده شد. به منظور تخمین مدل شبکه عصبی مصنوعی، متغیر قیمت سهام به عنوان متغیر وابسته و متغیرهای حجم معاملات سهام، شاخص صنعت دارو، قیمت نفت اوپک، نرخ ارز و قیمت طلا به عنوان متغیرهای مستقل در نظر گرفته شد. برای مقایسه دو مدل نیز از معیارهای MSE,RMSE,MAD,R2 و MAPE استفاده شد. به منظور تخمین مدل رگرسیون پیشبینی قیمت سهام از فرآیند خودرگرسیون میانگین متحرک انباشته (ARIMA) استفاده و تخمین ضرایب مدل با استفاده از نرمافزار آماری EVIEWS انجام شده و مدل شبکه عصبی مصنوعی(ANN) مناسب برای پیشبینی قیمت سهام نیز با استفاده از نرمافزار MATLAB ساخته شد. نتایج تحقیق نشان داد که فرضیه تحقیق در صورت تأثیر متغیرهای کلان اقتصادی بر روی قیمت سهام صحیح بوده و مدل شبکه عصبی مصنوعی (ANN) پیشبینی بهتری از قیمت سهام در بازار سهام ایران در مقایسه با روش خودرگرسیون میانگین متحرک انباشته (ARIMA) دارد.
چکیده انگلیسی:
In This Study We Compare the Efficiency of Both Artificial Neural Network Prediction Methods (ANN) and Traditional Method of Auto Regressive Integrated Moving Average (ARIMA) in Predicting Stock Prices in Iranian Stock Market. For This Purpose, Four Pharmaceutical Companies, Alborz Drug, Iran Drug, Pars Drug, and Jam Drug Were Selected and ARIMA Model and Artificial Neural Network Model Were Estimated For All Four Companies. In Order to Estimate Artificial Neural Network Model, Stock Price Variable as Dependent Variable and Stock Trading Volume, Drug Industry Index, OPEC Oil Price, Exchange Rate and Gold Price are Considered as Independent Variables. MSE, RMSE, MAD, R2 and MAPE Criteria Were Used to Compare Two Models. In Order to Estimate the Stock Price Forecast Regression Model, Use of Auto Regressive Integrated Moving Average (ARIMA) Regression Is Used and Estimation of the Coefficients of the Model is Performed Using the EVIEWS Statistical Software. An Suitable ANN Model Was Created For Predicting Stock Prices Using MATLAB Software. The Results of the Research Showed That the Research Hypothesis is Correct and the Artificial Neural Network Model (ANN) Has a Better Predictor of Stock Price in the Iranian Stock Market Than the ARIMA Method.
منابع و مأخذ:
آذر، عادل. اعتمادی، حسین و بقایی، وحید. (1391). به کارگیری شبکههای عصبی مصنوعی در پیشبینی سودآوری شرکتها (شرکتهای عضو بورس اوراق بهادار تهران)، پایاننامه کارشناسی ارشد، دانشکده مدیریت و حسابداری، دانشگاه تربیت مدرس.
اشلقی طلوعی، عباس و حقدوست، شادی. (1388). مدلسازی پیشبینی قیمت سهام با استفاده از شبکه عصبی و مقایسه آن با روشهای پیشبینی ریاضی. پژوهشنامه اقتصادی.
امینی آرش، زهرا. (1395) . پیشبینی بازده سهام با استفاده از مدل شبکه عصبی مصنوعی، شبکه عصبی فازی و آلگوریتم ژنتیک (مطالعه موردی بانکهای پذیرفتهشده در بورس اوراق بهادار تهران)، پایاننامه کارشناسی ارشد حسابداری، دانشکده حسابداری، دانشگاه آزاد اسلامی(واحد شهر قدس).
بادبروت˓ عزالدین. (1392). مقایسه کارایی مدلهای هوش مصنوعی و مدل ARMA برای پیشبینی قیمت سهام: مطالعه موردی هشت شرکت فعال بورس اوراق بهادار تهران، پایاننامه کارشناسی ارشد اقتصاد – گرایش نظری˓ دانشگاه سیستان و بلوچستان.
خاکیه˓ سیما. (1391). مقایسه قدرت پیشبینی روشهای ARIMA, FARIMA و شبکه عصبی در پیشبینی شاخص قیمت سهام (مطالعه موردی بورس اوراق بهادار تهران)، پایاننامه کارشناسی ارشد اقتصاد–گرایش توسعه و برنامهریزی اقتصادی˓ دانشکده اقتصاد و حسابداری˓ دانشگاه آزاد اسلامی (واحد تهران مرکزی).
خالوزاده، حمید و خاکیصدیق، علی. ارزیابی روشهای پیشبینی قیمت سهام و ارایه مدلی غیرخطی بر اساس شبکههای عصبی. مجله تحقیقات اقتصادی، سال چهارم، شماره 63، صفحات 43-85
خراشادیزاده، محمد. (1395). کاربرد مدلهای عصبی مصنوعی و خودرگرسیونی در پیشبینی قیمت صادرات مواد معدنی ایران: مطالعه موردی سنگ آهن و کرومیت. پایاننامه کارشناسی ارشد، دانشگاه پیامنور مشهد.
زارعی، لیلا. (1394). پیشبینی روند بازار سهام در بورس اوراق بهادار تهران با استفاده از شبکههای عصبی پویا و بر اساس شاخص قیمت دلار، نفت و طلا. پایاننامه کارشناسی ارشد، دانشکده مدیریت و حسابداری، دانشگاه علامه طباطبایی.
سراییان، آناهیتا. (1396). مقایسه روشهای رگرسیون خطی، ماشین بردار پشتیبان و شبکه عصبی مصنوعی برای پیشبینی قیمت سهام شرکت فولاد مبارکه اصفهان. پایاننامه کارشناسی ارشد، دانشکده مدیریت، دانشگاه شیخ بهایی.
صدیقی، اچ.آر. (1386). اقتصادسنجی رهیافت کاربردی. ترجمه شمساله شیرینبخش ]تهران[: انتشارات آوای نور.
کوهساری، بابک. (1393). بررسی مقایسهای آلگوریتم ژنتیک و شبکه عصبی در ارایه مدلهای پیشبینی قیمت سهام، مطالعه موردی فولاد مبارکه اصفهان. پایاننامه کارشناسی ارشد، دانشکده ادبیات و علوم انسانی، دانشگاه گیلان.
موسوی، فاطمهالسادات. (1390). پیشبینی قیمت سهام شرکت فرآوردههای نفتی پارس با استفاده از شبکه عصبی و روش رگرسیونی. پایاننامه کارشناسی ارشد، دانشکده مدیریت و حسابداری، دانشگاه یزد.
هاشمی اولادی، عبدالکریم. (1393). بررسی نتایج بکارگیری مدلهای شبکه عصبی مصنوعی و گارج در پیشبینی شاخص بورس اوراق بهادار تهران، پایاننامه کارشناسی ارشد (A) ، دانشکده مدیریت ، دانشگاه ازاد اسلامی (واحد تهران مرکز).
صادقی، حسین. ذوالفقاری، مهدی و الهامینژاد، مجتبی. (1390). مقایسه عملکرد شبکههای عصبی و مدل ARIMA در مدلسازی و پیشبینی کوتاهمدت قیمت سبد نفت خام اوپک (با تأکید بر انتظارات تطبیقی). فصلنامه مطالعات اقتصاد انرژی، سال هشتم، شمارع 28.
.Granger, C. W. J. (1991). Forecasting Stock market prices, Lessons for Department of Economics, p. 179.
Haoffi, Z., Gouping, X., Fagting, Y., Han, Y. (2007). A Neural Network Model Based on the Multi – Stage Optimization Approach for Short Term Food Price Forecasting in China. Expert System with Application, vol. 33, pp. 347-356.
Hwang, H., Ang, H. (2014). A Simple Neural Network for ARIMA Time Series. Omega, 29, pp. 319-333
Khashei, M., Bijari, M. (2010). An artificial neural network model for time series forecasting. Expert Systems with Appliations, 37(1), pp. 479-489
Hassan, R., Nath, B. (2007). A fusion model of hmm, ANN and GA for stock
market forecasting. Journal of Expert Systems with Applications, 33(1), pp. 171-180.
Mirmirani, S., Li, H.C. (2004). A comparison of VAR and neural networks withgenetic algorithm in forecasting price of oil. Advances in Econometrics, vol. 19, pp. 203-223.
Robert J. & Van Eyden. (2016). The Application of Neural Networks inthe Forecasting of Share Prices. Finance and Technology Publishing, pp. 47-72.
A., Shintani, M. (2003). No evidence of chaos but some evidence of dependence in US stock market. Chaos, solitonis and
Fractals, 17, 449-459.
Shahwan, T., Odening, M. (2007). Forecasting Agricultural Commodity Prices using Hybrid Neural Networks. Computational Intelligence in Economics and Finance.
Tan, H., Prokhorov, K., Wunsch, K. (1995). Conservative Thiry Calendar Stock Prediction Using a Probabilistic Neural Networks: Proceedings of Computational Intelligence for Financial Engineering Conference, Piscataway, NJ, USA, pp. 113-117.
Wang, Y. J., Lee, H.S., Zmijewski, M. (2012). A clustering method to identify representative financial ratios. Information Science, vol. 178. pp. 1087-1097
Werkooijen, H. (2013). Neural Networks as Economic Tool. Economic Institute Report, vol. 5
White, H. (1988). Economic Prediction Using Neural Networks: The Case Of IBM Daily Stock Returns. Proceeding of the IEEE International Conference on Neural Network, 451-458.
Zou, H.F., Xia, G.P., Yang, F.T., Wang, H.Y. (2007). An investigation and comparison of artificial neural network and time series models for Chinese
food grain price forecasting. Nurocomputing, vol. 70, pp. 2913-2923
_||_
Azar, Adel. Etemadi, Hossein and Baghai, Vahid. (2011). The use of artificial neural networks in predicting the profitability of companies (Tehran Stock Exchange member companies), Master's thesis, Faculty of Management and Accounting, Tarbiat Modares University.
Ashlaghi Toloui, Abbas and Haq-Doost, Shadi. (1388). Stock price prediction modeling using neural network and comparing it with mathematical prediction methods. Economic research paper.
Amini Arash, Zahra. (2015). Prediction of stock return using artificial neural network model, fuzzy neural network and genetic algorithm (case study of banks admitted to Tehran Stock Exchange), master's thesis in accounting, Faculty of Accounting, Islamic Azad University (unit Qods city).
Badbrut˓ Ezzeddin. (2012). Comparison of the efficiency of artificial intelligence models and ARMA model for stock price forecasting: a case study of eight companies active in the Tehran Stock Exchange, master's thesis in economics - theoretical orientation, University of Sistan and Baluchistan.
Khakiyeh and Sima. (2011). Comparing the forecasting power of ARIMA, FARIMA and neural network methods in forecasting the stock price index (Tehran Stock Exchange case study), Master's Thesis in Economics - Development Trend and Economic Planning, Faculty of Economics and Accounting Islamic Azad University (central Tehran branch).
Khaluzadeh, Hamid and Khaki Sadiq, Ali. Evaluating stock price forecasting methods and presenting a nonlinear model based on neural networks. Journal of Economic Research, Year 4, Number 63, Pages 43-85
Khorashadizadeh, Mohammad. (2015). Application of artificial neural and auto-regression models in forecasting the export price of Iranian minerals: a case study of iron ore and chromite. Master's thesis, Payam Noor University of Mashhad.
Zarei, Leila. (2014). Prediction of stock market trend in Tehran Stock Exchange using dynamic neural networks and based on dollar, oil and gold price index. Master's thesis, Faculty of Management and Accounting, Allameh Tabatabai University.
Saraiyan, Anahita. (2016). Comparison of linear regression, support vector machine and artificial neural network methods for forecasting the stock price of Isfahan Mobarake Steel Company. Master's thesis, Faculty of Management, Sheikh Bahai University.
Siddiqui, H.R. (1386). Applied econometrics. Translated by Shams-oleh Shirin-bakhsh [Tehran]: Avai Noor Publications.
Kohsari, Babak. (2013). A comparative study of genetic algorithm and neural network in providing stock price forecasting models, a case study of Folad Mobarake Isfahan. Master's thesis, Faculty of Literature and Humanities, Gilan University.
Mousavi, Fatemeh Al-Sadat. (1390). Forecasting the stock price of Pars Oil Products Company using neural network and regression method. Master's thesis, Faculty of Management and Accounting, Yazd University.
Hashemi Oladi, Abdul Karim. (2013). Examining the results of using artificial neural network and Garaj models in predicting Tehran Stock Exchange Index, Master's Thesis (M.A), Faculty of Management, Islamic Azad University (Tehran Central Branch).
Sadeghi, Hossein. Zulfiqari, Mehdi and Elhami-Nejad, Mojtaba. (1390). Comparison of the performance of neural networks and ARIMA model in modeling and short-term forecasting of OPEC crude oil basket price (with emphasis on adaptive expectations). Quarterly Journal of Energy Economy Studies, 8th year, number 28.
Granger, C. W. J. (1991). Forecasting Stock market prices, Lessons for Department of Economics, p. 179.
Haoffi, Z., Gouping, X., Fagting, Y., Han, Y. (2007). A Neural Network Model Based on the Multi – Stage Optimization Approach for Short Term Food Price Forecasting in China. Expert System with Application, vol. 33, pp. 347-356.
Hwang, H., Ang, H. (2014). A Simple Neural Network for ARIMA Time Series. Omega, 29, pp. 319-333
Khashei, M., Bijari, M. (2010). An artificial neural network model for time series forecasting. Expert Systems with Appliations, 37(1), pp. 479-489
Hassan, R., Nath, B. (2007). A fusion model of hmm, ANN and GA for stock
market forecasting. Journal of Expert Systems with Applications, 33(1), pp. 171-180.
Mirmirani, S., Li, H.C. (2004). A comparison of VAR and neural networks withgenetic algorithm in forecasting price of oil. Advances in Econometrics, vol. 19, pp. 203-223.
Robert J. & Van Eyden. (2016). The Application of Neural Networks inthe Forecasting of Share Prices. Finance and Technology Publishing, pp. 47-72.
A., Shintani, M. (2003). No evidence of chaos but some evidence of dependence in US stock market. Chaos, solitonis and
Fractals, 17, 449-459.
Shahwan, T., Odening, M. (2007). Forecasting Agricultural Commodity Prices using Hybrid Neural Networks. Computational Intelligence in Economics and Finance.
Tan, H., Prokhorov, K., Wunsch, K. (1995). Conservative Thiry Calendar Stock Prediction Using a Probabilistic Neural Networks: Proceedings of Computational Intelligence for Financial Engineering Conference, Piscataway, NJ, USA, pp. 113-117.
Wang, Y. J., Lee, H.S., Zmijewski, M. (2012). A clustering method to identify representative financial ratios. Information Science, vol. 178. pp. 1087-1097
Werkooijen, H. (2013). Neural Networks as Economic Tool. Economic Institute Report, vol. 5
White, H. (1988). Economic Prediction Using Neural Networks: The Case Of IBM Daily Stock Returns. Proceeding of the IEEE International Conference on Neural Network, 451-458.
Zou, H.F., Xia, G.P., Yang, F.T., Wang, H.Y. (2007). An investigation and comparison of artificial neural network and time series models for Chinese
food grain price forecasting. Nurocomputing, vol. 70, pp. 2913-2923