کاربرد مدل حرکت براوونی هندسی تعمیم یافته توسط فرآیند رژیم سوئیچینگ مارکوف درشبیه سازی قیمت سهام: رویکرد پویایی شناسی سیستمی
محورهای موضوعی : مهندسی مالیناهید مالکی نیا 1 , حسین عسگری آلوج 2 * , ظاهر سپهریان 3
1 - گروه حسابداری و مدیریت ، واحد بیله سوار، دانشگاه آزاد اسلامی بیله سوار ، ایران
2 - گروه حسابداری و مدیریت، واحد بیله سوار، دانشگاه آزاد اسلامی ، بیله سوار ، ایران
3 - گروه ریاضی ، واحد بیله سوار، دانشگاه آزاد اسلامی ، بیله سوار ، ایران
کلید واژه: کالیبراسیون, پویایی شناسی سیستم, حرکت براوونی هندسی, رانش, رژیم سوئیچینگ مارکوف,
چکیده مقاله :
هدف:دراین پژوهش تغییرات قیمت سهام شرکت ایران خودروپذیرفته شده در بورس اوراق بهادار تهران دردوره زمانی 23/9/1387 الی 13/12/1396 با هدف مدل سازی، بر اساس مدل حرکت براوونی هندسی تعمیم یافته بافرآیندرژیم سوئیچینگ مارکوف که شکل تعمیم یافته مدل حرکت براوونی هندسی می باشد، برروی مقوله پیش بینی مورد مطالعه قرار گرفته است.روش: مدل پژوهش بااستفاده ازرویکردپویایی شناسی سیستمی ونرم افزار Vensim DSS ابتدادرقالب نمودارعلی-معلولی و پس ازمشخص نمودن متغیرهای حالت وجریان، درقالب نمودارحالت وجریان تک حلقه ای ودوحلقه ای طراحی وشبیه سازی برای قیمت پایانی روزانه سهام انجام گرفت.دوپارامترریشه اختلال وگام زمانی به عنوان پارامترهای تحلیل حساسیت شناسایی وبکارگرفته شد. یافته ها: ابتدا خطای شبیه سازی به ازای تغییرات تصادفی درریشه اختلال 74/22 درصد و درگام زمانی 35/30 درصد برآوردشد. بعلت بالابودن خطای شبیه سازی بالاترازحدقابل قبول 15درصد، هردوپارامترکالیبره شدند. جهت تخمین مناسبی از محدوده پارامترهای کالیبراسیون ازروش آزمون وخطا و مشاهده میدانی رفتارسیستم استفاده گردید. خطای شبیه سازی پس ازکالیبراسیون به ازای پارامترریشه اختلال از 74/22 درصد به 5/8 درصد وبه ازای گام زمانی از 35/30 درصد به 63/3 درصد کاهش یافت. دقت شبیه سازی به ازای پارامترریشه اختلال از26/77 درصد به 5/91 درصد و به ازای گام زمانی از 65/69 درصد به 37/96درصد افزایش یافت.نتیجه گیری: نتایجنشانمیدهد بابهینه سازی پارامترهای کالیبراسیون میزان ریشه های خطا به حالت ایده آل رسیده یعنی خطای نابرابری کوواریانس هابه سمت عدد یک و خطای نابرابری مبنا وخطای نابربری واریانس ها به سمت عدد صفر نزدیک شده ونشان ازصحت عملکردمدل پژوهشدرشبیه سازی قیمت سهام دارد.
Objective: In this study, the changes of the stock price of Iran Khodro Company listed in Tehran Stock Exchange (TSE) has been studied on the issue of prediction modeling during of 9/13/1387 to 13/12/1396 based on Geometric Brownian Motion (GBM) model generalized by the Markov switching regime (MSR).Methods: The research model was designed by system dynamics (SD) approach and Vensim DSS software in the causal- loop diagrams (CLD) firstly and then after specifying the flow-state variables, mono-loop and two-loop stock–flow diagrams (SFDs) was designed and daily final stock price was simulated. Two-parameter of noise seed and time step were identified and applied as sensitivity analysis parameters.Results: The simulation error was estimated for the random variations of the noise seed and the time step configured by default user parameters up to 22/74 and 30/35 percent, respectively. Both parameters were calibirated due to higher simulation error than acceptable error of 15 percent. Trial - error and field observation methods was performed in order to appropriate estimation of the calibration parameters range.The post-calibration accuracy of simulation per noise seed parameter increased from 77/26 to 91/5 percent and per time step from 69/65 to 96/37 percent.Conclusion: Findings indicate that the error roots have reached to the ideal mode by optimizing of the calibration parameters as covariance inequality error approached to one unit and base inequality error and variance inequality error approached to zero and indicate functionality accuracy of the GBM generalized by the MSR in stock price simulation.
_||_
1) Sterman, John D. (2015). Business dynamics (systemic thinking and modeling for a complex world), translation: Brarpur Korosh and others, first volume, Samt Publications.
2) Emami, Sofia (2013). Option pricing and switching regime model, Master's thesis, Gilan University, Faculty of Mathematical Sciences.
3) Pourmoradi, Marzieh; Shabani, Zainab; Sam Deliri, Leila (2015). Stochastic differential equations approach in predicting financial variables - a case study of Iran Khodro stock in Tehran Stock Exchange, 9th Conference of Iranian Society for Operations Research, Shiraz University of Technology.
4) Khochiani, Ramin; Hosseini, Seyyed Mohammad Hossein; Shujaei, Fatemeh (2017). Comparison of prediction of linear and non-linear models for stock prices of pharmaceutical industries based on stochastic differential equations, national production and sustainable employment conference, challenges and solutions, Borujerd, Ayatollah Borujerdi University (RA).
5) Rahim F, Kamran; Nemati, Omid (2015). Calibration of simulated models using Aimsun software, the first international conference on man, architecture, civil and city engineering, Tabriz.
6) Zare, Hashem; Rezai Sakha, Zainab; Zare, Mohammad (2017). An equilibrium model for stochastic simulation of Iranian stock market behavior: an approach from physical economics, financial management strategy, 6th year, (21), 73-104.
7) Nabavi Chashmi, Seyyed Ali; Mokhtarinejad, Mariah (2015). Comparison of Brownie movement and Brownie fractional and Garch models in estimating stock return fluctuations, Journal of Financial Engineering and Securities Management, (29), 25-44.
8) Askari, Mohsen (2014). Investigating fractional Brownian motion and its role in stock price trend analysis, master's thesis, Shahid University, Department of Basic Sciences.
9) Omrani, Samia (2018). Price forecasting using stochastic differential equations and time series, master's thesis, Kharazmi University, Faculty of Economic Sciences, Tehran.
10) Moulai, Saber; Barzani, Mohammad Vaez; Samadi, Saeed (2015). Modeling stock price behavior using stochastic differential equations with stochastic fluctuation, Financial Knowledge of Securities Analysis (Financial Studies), 9(32), 1-13.
11) Mohseni, Reza; Karmadall, Leila (2016). Estimating stock prices of energy markets including oil, gas and coal: A comparison of linear and nonlinear Markov switching regime models, Journal of Management Studies, 10(3), 715-728.
12) Nisi, Abdulsadeh; Chamani Anbaji, Roya; Shujaei Menesh, Lili (2013). Three basic models in financial mathematics, Journal of Advanced Mathematical Modeling, 2(1), 77-96.
13) Ahmad, S.; Tahar, R.M.; Muhammad-Sukki, F.; Munir, A.B.; Rahim, R.A., (2016). Application of system dynamics approach in electricity sector modeling: A review. Renewable and Sustainable Energy Reviews, 56, 29–37.
14) Asgari, Mohsen (2015). Investigating Fractional Brownian Motion and Its Role in Analysis of Stock Price Trend, MSc Thesis, Shahed University, Department of Applied Sciences (in Persian).
15) Azizi S.M.E.P.M., Neisy A. (2018). A New Approach in Geometric Brownian Motion Model. In: Cao BY. (eds) Fuzzy Information and Engineering and Decision, Advances in Intelligent Systems and Computing, vol 646.
16) Bongiorno E.G., Goia A., Vieu P. (2017). On the Geometric Brownian Motion assumption for financial time series. In: Aneiros G., G. Bongiorno E., Cao R., Vieu P. (eds) Functional Statistics and Related Fields. Contributions to Statistics. Springer, Cham.
17) Braumann Carlos A, (2019). Introduction to Stochastic Differential Equations with Applications to Modeling in Biology and Finance (Chapter 8: Study of geometric Brownian motion (the stochastic Malthusian model or Black–Scholes model( ), John Wiley & Sons Ltd
18) Boudreault Mathieu, Renaud Jean-François (2019). Actuarial Finance: Derivatives, Quantitative Models and Risk Management, One (Chapter 14: Brownian motion), John Wiley & Sons, Inc.
19) Cleofe Giorgino Maria, Barnabè Federico, Martin Kunc (2019). Integrating qualitative system dynamics with accounting practices: The case of integrated reporting and resource mapping, System research and behavioral science, 1-22.
20) Dobrow Robert P., (2016). Introduction to Stochastic Processes with R (Chapter 8: Brownian motion), John Wiley & Sons, Inc.
21) Emami, Sophia (2014). Option Pricing and Switching Regime Model, Masters Thesis, University of Guilan, and Faculty of Mathematical Sciences (in Persian).
22) Forrester, J.W., (1994). System dynamics, systems thinking, and software, O.R. System Dynamics Review, 10, 245–256.
23) Kavetsky, Carlos, (2017). Calibrating a System Dynamic Model within an Integrative Framework to Test Foreign Policy Choices, Electronic Theses and Dissertations. 5578, 1-197
24) Khuchiyani Ramin, Hosseini Seyed Mohammad, Shojaee Fatemeh (2018). Comparison of Linear and Nonlinear Forecasting Models of Pharmaceutical Stocks Based on Stochastic Differential Equations, Conference of National Production and Sustainable Employment, Challenges and Solutions, Boroujerd, Ayatollah Boroujerdi University (in Persian).
25) Krishna Reddy, Vaughan Clinton, (2016). Simulating Stock Prices Using Geometric Brownian motion: Evidence from Australian Companies, Australasian Accounting, Business and Finance Journal, 10(3), 23-47.
26) Mola'i, Saber; Barzani, Mohammadvaez; Samadi Saeed (2016). Modeling of Stock Price Behavior using Stochastic Differential Equations by Stochastic Volatility, Financial Knowledge of Securities Analysis,
Financial Studies, 9 (32), 1-13 (in Persian).
27) Mohseni, Reza; Sakhtkar madlal, Leila (2016). Estimating Stock price of Energy Market including Oil, Gas, and Coal: Comparison of Linear and Nonlinear Markov Switching Regime Models, Iranian Journal of Management Studies, 10 (3), 715-728(in Persian).
28) Nabavi Chashmi, Seyed Ali; Mokhtarinejad, Marieh (2016). Comparison of Brownian Motion and Fractional Brownian motion and Garch Models in Estimating Stock Returns Volatility, Journal of Financial Engineering and Securities Management, (29), 44-25 (in Persian).
29) Nisi, Abdul Sadeh; Chamani Enbaji, Roya; Shojaee Manesh, Leily (2012). Three Basic Models in Financial Mathematics, Journal of Advanced Mathematical Modeling, 2 (1), 77-96 (in Persian).
30) Omrani, Somayeh (2019). Price Forecasting using Stochastic Differential Equations and Time Series, MSc Thesis, Kharazmi University - Faculty of Economics Sciences, Tehran (in Persian).
31) Pedro P. Mota & Manuel L. Esquivel, (2016). Model selection for stock prices data, Journal of Applied Statistics, 43:16, PP2977-2987.
32) Pourmoradi, Marzieh; Shabani, Zeinab; Sam Deliri, Leila (2016). Approach of Stochastic Differential Equations in Predicting Financial Variables - A Case Study of Iran Khodro Stock in Tehran Stock Exchange(TSE), 9th Iranian Association Conference of Operational Research of Shiraz Industrial University (in Persian).
33) Primbs James A., RossBarmish B., (2018). On Robustness of Simultaneous Long-Short Stock Trading Control with Time-Varying Price Dynamics, IFAC-PapersOnLine, 50(1), 12267-12272.
34) Rahimov, Kamran; Nemati, Omid (2015). Calibration of simulated models using Aimsun software, 1st International Conference on Human, Architecture, Civil and Urban Engineering, Tabriz (in Persian).
35) Shao, J. Chin. Ann. Math. Ser. B (2018). Ergodicity and First Passage Probability of Regime-Switching Geometric Brownian Motions, Chinese Annals of Mathematics, Series B, 39(4), 739-754
36) Sterman, J.D., (1984). Appropriate Summary Statistics for Evaluating the Historical Fit of System Dynamics Models. Dynamica, 10, 51-66.
37) Sterman, John D. (2016). Business Dynamics (Systems Thinking and Modeling for a Complex World), Bararpour Kouroush et al., Vol1, Samt publications (in Persian).
38) Steven P. Lalley, (2016). Stochastic Differential Equations, University of Chicago, Department of Statistics, Working paper, 1-11.
39) Zare, Hashem; Rezaei Sakha, Zeinab; Zare, Mohammad (2018). An Equilibrium Model for Stochastic Simulation of Iranian Market Behavior: An Approach from Physical Economics, Financial Management Strategy, 6 (21), pp. 104-73 (in Persian).
40) Zhikun Ding, Wenyan Gong, Shenghan Li and Zezhou Wu (2018). System Dynamics versus Agent-Based Modeling: A Review of Complexity Simulation, sustainability, 10, 2484; 1-13.