فراوانی اینتگرونهای کلاس I و II و ژن های مقاومت به آمینوگلیکوزیدها در جدایه های بالینی استافیلوکوکوس اورئوس در شمال ایران
محورهای موضوعی : Biotechnological Journal of Environmental Microorganismsمهسا آقایی 1 , لیلا اسدپور 2 * , امیر آراسته 3
1 - گروه زیست شناسی، واحد رشت،دانشگاه آزاد اسلامی، رشت، ایران
2 - گروه زیست شناسی ، واحد رشت، دانشگاه آزاد اسلامی ، رشت ، ایران
3 - گروه زیست شناسی، واحد رشت ، دانشگاه آزاد اسلامی ، رشت ، ایران
کلید واژه: : استافیلوکوکوس اورئوس, آمینوگلیکوزیدها, اینتگرون, aac(6’)-Ie-aph(2”), aph(3’)-IIIa, ant(4’)-Ia,
چکیده مقاله :
استافیلوکوکوس اورئوس یک باکتری بیماریزای بیمارستانی است که می تواند طیف وسیعی از عفونت ها را ایجاد کند. آمینوگلیکوزیدها یکی از داروهای انتخابی در درمان سپتی سمی ناشی از این باکتری هستند. هدف از این مطالعه بررسی میزان مقاومت به آمینوگلیکوزیدها، تعیین فراوانی ژنهای آنزیمی تغییر دهنده آمینوگلیکوزیدها و فراوانی اینتگرونهای کلاس I و II در بین جدایههای بالینی استافیلوکوکوس اورئوس میباشد. در این مطالعه مقاومت ۲۰۰ جدایه استافیلوکوکوس اورئوس به آمینوگلیکوزیدها شامل جنتامایسین، کانامایسین، آمیکاسین و استرپتومایسین با روش انتشار از دیسک کربی-بوئر بررسی شد. فراوانی ژنهای aac(6’)-Ie-aph (2”)، aph(3’)-IIIa و ant(4’)-Ia و اینتگرونهای کلاس I و II در جدایههای مورد بررسی با روش PCR تعیین شد. از ۲۰۰ ایزوله، ۱۳۴ ایزوله (67%) به حداقل یک آمینوگلیکوزید مقاوم بودند. از این تعداد، فراوانی ژن های aac(6')-Ie-aph(2”)، aph(3')-IIIa و ant(4)- Ia به ترتیب ۰۷/۳۵، ۱/۲۹ و ۲۰ درصد بود. اینتگرون های کلاس I و II به ترتیب در ۶۶% و ۱۹% از جدایه ها شناسایی شدند تمامی جدایه های حامل اینتگرون کلاس I، مقاوم به آمینوگلیکوزید و از نظر حصور ژن های تغییر دهنده آمینوگلیکوزید مثبت بودند. نتایج نشان داد که در جدایه های بالینی استافیلوکوکوس اورئوس حامل اینتگرون های calss I و II مقاومت بالایی به آمینوگلیکوزیدها وجود دارد و فراوانی ژن های تغییر دهنده آمینوگلیکوزیدها بالاست.
Staphylococcus aureus is known as a hospital pathogenic bacterium that can cause a wide range of infections. Aminoglycosides are one of the drugs of choice in the treatment of septicemia caused by this bacterium. The aim of this study is to investigate the level of resistance to aminoglycosides, determine the frequency of aminoglycosides modifying enzyme genes and the frequency of class I and II integrons among clinical isolates of aminoglycosides resistant S. aureus. In this study, the resistance of 200 isolates of S. aureus to aminoglycosides including gentamycin, kanamycin, amikacin and streptomycin were investigated by Kirby-Boyer disc diffusion method. The frequency of aac(6’)-Ie-aph(2”), aph(3’)-IIIa and ant(4’)-Ia genes and and class 1 and 2 integrons in test isolates were determined by PCR. Out of 200 isolates, 134 isolates (67%) were resistant to at least one aminoglycoside. Of this number, the frequency of aac(6’)-Ie-aph(2”), aph(3’)-IIIa and ant(4’)-Ia genes were 35.07%, 29.1% and 20%, respectively. Class I and II Integrons were detected in respectively 66% and 19% of isolates. All of isolates carrying class I integron were aminoglycoside resistant and positive for aminoglycoside modifying genes. The results showed high resistance to aminoglycosides and high frequency of aminoglycoside modifying genes in clinical S. aureus isolates carrying calss I and II integrons
Alli O, Ogbolu D, Bamigboye K, Animasaun A, Oluremi A. Distribution of genes encoding aminoglycoside modifying enzymesamongst methicillin resistantandmethicillin sensitive Staphylococcus aureus isolates from Nigerian hospitals. Afr J Microbiol Res. 2015;9(5):318–25.
Arabestani, M. R., S. Rastiany, S. F. Mousavi, S. Ghafel and M. Y. Alikhani (2015). "Identification of toxic shock syndrom and exfoliative toxin genes of Staphylococcus aureus in carrier persons, resistant and susceptible methicillin." Tehran University Medical Journal 73(8): 554-560.
Ardic, N., B. Sareyyupoglu, M. Ozyurt, T. Haznedaroglu and U. Ilga (2006). "Investigation of aminoglycoside modifying enzyme genes in methicillin-resistant staphylococci." Microbiological research 161(1): 49-54
Choi, S. M., S. H. Kim, H. J. Kim, D. G. Lee, J. H. Choi, J. H. Yoo, J. H. Kang, W. S. Shin and M. W. Kang (2003). "Multiplex PCR for the detection of genes encoding aminoglycoside modifying enzymes and methicillin resistance among Staphylococcus species." Journal of Korean medical science 18(5): 631-636.
Didelot, X., A. S. Walker, T. E. Peto, D. W. Crook and D. J. Wilson (2016). "Within-host evolution of bacterial pathogens." Nature Reviews Microbiology 14(3): 150-162.
Fatholahzadeh, B., M. Emaneini, M. M. Feizabadi, H. Sedaghat, M. Aligholi, M. Taherikalani and F. Jabalameli (2009). "Characterisation of genes encoding aminoglycoside-modifying enzymes among meticillin-resistant Staphylococcus aureus isolated from two hospitals in Tehran, Iran." International journal of antimicrobial agents 33(3): 264-265.
Ferreira, A. M., K. B. Martins, V. R. d. Silva, A. L. Mondelli and M. d. L. R. d. S. d. Cunha (2017). "Correlation of phenotypic tests with the presence of the blaZ gene for detection of beta-lactamase." brazilian journal of microbiology 48: 159-166
Gade ND, Qazi MS. Recent trend of aminoglycoside resistance among Staphylococcus aureus isolates in tertiary care hospital. J Microbiol Antimicrob. 2014;6(6):94–6. doi: 10.5897/JMA2014.0315.
Goudarzi M, Seyedjavadi SS, Azad M, Goudarzi H, Azimi H. Distribution of spa types, integrons and associated gene cassettes in Staphylococcus aureus strains isolated from intensive care units of hospitals in Tehran, Iran. Archives of Clinical Infectious Diseases. 2016;11
Hall RM, editor Mobile gene cassettes and integrons: moving antibiotic resistance genes in gram‐negative bacteria. Ciba Foundation Symposium 207‐Antibiotic Resistance: Origins, Evolution, Selection and Spread: Antibiotic Resistance: Origins, Evolution, Selection and Spread: Ciba Foundation Symposium 207; 2007: Wiley Online Library
Hu Y, Liu A, Vaudrey J, Vaiciunaite B, Moigboi C, McTavish SM, et al. Combinations of beta-lactam or aminoglycoside antibiotics with plectasin are synergistic against methicillin-sensitive and methicillin-resistant Staphylococcus aureus. PLoS One. 2015;10(2) doi: 10.1371/journal.pone.0117664. [PubMed: 25692771].
Jana S, Deb J. Molecular understanding of aminoglycoside action and resistance. Applied microbiology and biotechnology. 2006;70(2):140-50
Mahdiyoun SM, Kazemian H, Ahanjan M, Houri H, Goudarzi M. Frequency of aminoglycoside-resistance genes in methicillin-resistant Staphylococcus aureus (MRSA) isolates from hospitalized
Moura A, Henriques I, Ribeiro R, Correia A. Prevalence and characterization of integrons from bacteria isolated from a slaughterhouse wastewater treatment plant. Journal of Antimicrobial Chemotherapy. 2007;60(6):1243-50
Nikaido H, Zgurskaya HI. AcrAB and related multidrug efflux pumps of Escherichia coli. J Mol Microbiol Biotechnol 2001; 3(2): 215-8.
Nihonyanagi, S., Y. Kanoh, K. Okada, T. Uozumi, Y. Kazuyama, T. Yamaguchi, N. Nakazaki, K. Sakurai, Y. Hirata and S. Munekata (2012). "Clinical usefulness of multiplex PCR lateral flow in MRSA detection: a novel, rapid genetic testing method." Inflammation 35(3): 927-934
Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile genetic elements associated with antimicrobial resistance. Clinical microbiology reviews. 2018;31(4):10.1128/cmr. 00088-17.
Rahi, A., H. Kazemeini, S. Jafariaskari, A. Seif, S. Hosseini and F. S. Dehkordi (2020).
"Genotypic and phenotypic-based assessment of antibiotic resistance and profile of staphylococcal cassette chromosome mec in the methicillin-resistant Staphylococcus aureus recovered from raw milk." Infection and drug resistance 13: 273.
Soleimani N, Sattari M. A molecular study of aac(3)– IIa(aacC2) gene in aminoglycoside resistant Escherichia coli isolated from urine. Journal of Medical Science: Pathobiology. 2010; 13(3): 23-30.
Salasia SIO, Tato S, Sugiyono N, Ariyanti D, Prabawati F. Genotypic characterization of Staphylococcus aureus isolated from bovines, humans, and food in Indonesia. Journal of veterinary science. 2011;12(4):353.
Shmitz FJ, Fluit AC, Gondolf M, Beyrau R, Lindenlauf E, Verhoef J, et al. The prevalence of aminoglycoside resistance and corresponding resistance genes in clinical isolates of staphylococci from 19 European hospitals. J Antimicrob Chemother. 1999;4(3): 253-9
Straub JA, Hertel C, Hammes WP. A 23S rDNA-targeted polymerase chain reaction–based system for detection of Staphylococcus aureus in meat starter cultures and dairy products. Journal of food protection. 1999;62(10):1150-6
Vanhoof, R., C. Godard, J. Content, H. Nyssen and E. Hannecart-Pokorni (1994). "Detection by polymerase chain reaction of genes encoding aminoglycoside-modifying enzymes in methicillin-resistant Staphylococcus aureus isolates of epidemic phage types." Journal of medical microbiology 41(4): 282-290.
Yadegar A, Satri M, Mozafari N. Pervalence ant (4’)-Ia gene among nosocomial methicillin resistant Staphylococcus aureus by Multiplex-PCR. MJMS. 2010;1:59-68
Yahaghi E, Fooladi AAI, Amin M, Mirnejad R, Nezamzade R, Amani J. Detection of class I integrons in Staphyloacoccus aurous isolated from clinical samples. Iranian Red Crescent Medical Journal. 2014;16
Yang H, Chen S, White DG, Zhao S, McDermott P, Walker R, et al. Characterization of multiple-antimicrobial-resistant Escherichia coli isolates from diseased chickens and swine in China. Journal of clinical microbiology. 2004;42(8):3483-9
Yoo, J. I., J. W. Kim, G. S. Kang, H. S. Kim, J. S. Yoo and Y. S. Lee (2013). "Prevalence of amino acid changes in the yvqF, vraSR, graSR, and tcaRAB genes from vancomycin intermediate resistant Staphylococcus aureus." Journal of microbiology 51: 160-165.
Zhang Z, Wang J, Wang H, Zhang L, Shang W, Li Z, Song L, Li T, Cheng M, Zhang C, Zhao Q. Molecular Surveillance of MRSA in Raw Milk Provides Insight into MRSA Cross Species Evolution. Microbiology Spectrum. 2023 Jun 1:e00311-23
Zuo GY, Han ZQ, Hao XY, Han J, Li ZS, Wang GC. Synergy of aminoglycoside antibiotics by 3 benzylchroman derivatives from the chinese drug caesalpinia sappan against clinical methicillin-resistant staphylococcus aureus (MRSA). Phytomed. 2014;21(7):936-41.