Optimization of Mechanical and Process Parameters for Enhanced Energy Conversion Efficiency in the Aluminum-Air Batteries
Subject Areas : Mechanical EngineeringMohammad Saadat 1 , Saeid Kheradmand 2 *
1 - Department of Mechanical Engineering, Malek-Ashtar University of Technology, Shahin-shahr, Isfahan, Iran
2 - Department of Mechanical Engineering, Malek-Ashtar University of Technology, Shahin-shahr, Isfahan, Iran
Keywords: Aluminum-Air Battery, Cathode, Graphite, MnO2,
Abstract :
In this study, we focused on enhancing the performance of aluminum-air batteries by optimizing the cathode's material composition and manufacturing parameters. The catalyst layer, consisting of amorphous manganese dioxide (MnO₂), graphite, and carbon black, was systematically improved to maximize oxygen reduction reaction (ORR) efficiency. Additionally, the gas diffusion layer (GDL), composed of activated carbon and polytetrafluoroethylene (PTFE), was refined to ensure optimal gas permeability and mechanical stability. Through galvanostatic discharge tests, the optimized battery demonstrated a stable voltage of 1.8 V at a current density of 20 mA/cm², with significant improvements in energy efficiency and discharge stability. The final optimized cathode composition included 60% MnO₂, 30% graphite, and 10% carbon black, sintered at 310°C. This combination resulted in a uniform PTFE distribution and enhanced three-phase reaction sites, critical for efficient ORR kinetics. These findings highlight the potential of cost-effective, readily available materials for achieving high-performance aluminum-air batteries, paving the way for sustainable and economically viable energy storage solutions.
[1] Liu, Q., Pan, Z., Wang, E., An, L., and Sun, G., Aqueous Metal-Air Batteries: Fundamentals and Applications, Energy Storage Mater, Vol. 27, 2020, pp. 478–505.
[2] Nayem, S. M. A., Islam, S., Mohamed, M., Shaheen Shah, S., Ahammad, A. J. S., and Aziz, M. A., A Mechanistic Overview of the Current Status and Future Challenges of Aluminum Anode and Electrolyte in Aluminum‐Air Batteries, The Chemical Record, Vol. 24, 2024, pp. e202300005.
[3] Yang, H., Li, X., Wang, Y., Gao, L., Li, J., Zhang, D., and Lin, T., Excellent Performance of Aluminium Anode Based on Dithiothreitol Additives for Alkaline Aluminium/Air Batteries, J. Power Sources, Vol. 452, 2020, pp. 227785.
[4] Liu, X., Jiao, H., Wang, M., Song, W., Xue, J., and Jiao, S., Current Progresses and Future Prospects on Aluminium–Air Batteries. International Materials Reviews, Vol. 67, 2022, pp. 734–764.
[5] Tan, W. C., Saw, L. H., Yew, M. C., Sun, D., Cai, Z., Chong, W. T., and Kuo, P. Y., Analysis of the Polypropylene-Based Aluminium-Air Battery, Front Energy Res, Vol. 9, 2021, pp. 599846.
[6] Sun, S., Xue, Y., Wang, Q., Li, S., Huang, H., Miao, H., and Liu, Z., Electrocatalytic Activity of Silver Decorated Ceria Microspheres for the Oxygen Reduction Reaction and Their Application in Aluminium–Air Batteries. Chemical Communications, Vol. 53, 2017, pp. 7921–7924.
[7] Wang, D., Li, H., Liu, J., Zhang, D., Gao, L., and Tong, L., Evaluation of AA5052 Alloy Anode in Alkaline Electrolyte with Organic Rare-Earth Complex Additives for Aluminium-Air Batteries, J. Power Sources, Vol. 293, 2015, pp. 484–491.
[8] Jiang, M., Fu, C., Cheng, R., Liu, T., Guo, M., Meng, P., Zhang, J., and Sun, B., Interface Engineering of Co3Fe7-Fe3C Heterostructure as an Efficient Oxygen Reduction Reaction Electrocatalyst for Aluminum-Air Batteries, Chemical Engineering Journal, Vol. 404, 2021, pp. 127124.
[9] Sun, S., Miao, H., Xue, Y., Wang, Q., Li, S., and Liu, Z., Oxygen Reduction Reaction Catalysts of Manganese Oxide Decorated by Silver Nanoparticles for Aluminum-Air Batteries, Electrochim Acta, Vol. 214, 2016, pp. 49–55.
[10] Soodmand, A. M., Azimi, B., Nejatbakhsh, S., Pourpasha, H., Farshchi, M. E., Aghdasinia, H., Mohammadpourfard, M., and Zeinali Heris, S., A Comprehensive Review of Computational Fluid Dynamics Simulation Studies in Phase Change Materials: Applications, Materials, and Geometries, J. Therm Anal Calorim, Vol. 148, 2023, pp. 10595–10644.
[11] Ehsani, A., Nejatbakhsh, S., Soodmand, A. M., Farshchi, M. E., and Aghdasinia, H., High-Performance Catalytic Reduction of 4-Nitrophenol to 4-Aminophenol Using M-BDC (M= Ag, Co, Cr, Mn, and Zr) Metal-Organic Frameworks, Environ Res, Vol. 227, 2023, pp. 115736.
[12] Saleh-Abadi, M., Rostami, M., Farajollahi, A. H., Amirkhani, R., Farshchi, M. E., and Simiari, M., Employing Granulated Bimetallic Nanocomposite of Ni/Cu@ CuMOF Nanocomposite in Steam Reforming of Methanol Process for Hydrogen Production, International Journal of Energy for a Clean Environment, Vol. 25, 2024.
[13] Farshchi, M. E., Bozorg, N. M., Ehsani, A., Aghdasinia, H., Chen, Z., Rostamnia, S., and Ni, B. J., Green Valorization of PET Waste into Functionalized Cu-MOF Tailored to Catalytic Reduction of 4-Nitrophenol. J Environ Manage, Vol. 345, 2023, pp. 118842.
[14] Pourkhalil, L., Aghdasinia, H., Nejatbakhsh, S., Farshchi, M. E., and Kazemian, H., Green Synthesis of Cr-BDC@ ɣ-Al2O3 Granular Adsorbents for Effective Removal of Monoethylene Glycol (MEG) from Industrial Wastewater. Colloids Surf A Physicochem Eng Asp, Vol. 699, 2024, pp. 134653.
[15] Nejatbakhsh, S., Soodmand, A. M., Azimi, B., Farshchi, M. E., Aghdasinia, H., and Kazemian, H., Semi-Pilot Scale Fluidized-Bed Reactor Applied for the Azo Dye Removal from Seawater by Granular Heterogeneous Fenton Catalysts, Chemical Engineering Research and Design, Vol. 195, 2023, pp. 1–13.
[16] Ebrahimi Farshchi, M., Aghdasinia, H., Rostamnia, S., and Sillanpää, M., Catalytic Adsorptive Elimination of Deleterious Contaminant in a Pilot Fluidised-Bed Reactor by Granulated Fe3O4/Cu-MOF/Cellulose Nanocomposites: RSM Optimisation and CFD Approach, Int J Environ Anal Chem, 2023, pp. 1–22.
[17] Mousavi, S. B., Pourpasha, H., and Heris, S. Z., High-Temperature Lubricity and Physicochemical Behaviors of Synthesized Cu/TiO2/MnO2-Doped GO Nanocomposite in High-Viscosity Index Synthetic Biodegradable PAO Oil, International Communications in Heat and Mass Transfer, Vol. 156, 2024, pp. 107642.
[18] Pourpasha, H., Heris, S. Z., and Mousavi, S. B., Thermal Performance of Novel ZnFe2O4 and TiO2-Doped MWCNT Nanocomposites in Transformer Oil, J. Mol Liq, Vol. 394, 2024, pp. 123727.
[19] Qin, Y., Wu, H. H., Zhang, L. A., Zhou, X., Bu, Y., Zhang, W., Chu, F., Li, Y., Kong, Y., and Zhang, Q., Aluminum and Nitrogen Codoped Graphene: Highly Active and Durable Electrocatalyst for Oxygen Reduction Reaction, ACS Catal, Vol. 9, 2018, pp. 610–619.
[20] Cheng, R., Wang, F., Jiang, M., Li, K., Zhao, T., Meng, P., Yang, J., and Fu, C., Plasma-Assisted Synthesis of Defect-Rich O and N Codoped Carbon Nanofibers Loaded with Manganese Oxides as an Efficient Oxygen Reduction Electrocatalyst for Aluminum–Air Batteries, ACS Appl Mater Interfaces, Vol. 13, 2021, pp. 37123–37132.
[21] Bidault, F., Brett, D. J. L., Middleton, P. H., and Brandon, N. P., Review of Gas Diffusion Cathodes for Alkaline Fuel Cells, J. Power Sources, Vol. 187, 2009, pp. 39–48.
[22] Rajore, S. M., Kanwade, A. R., Satrughna, J. A. K., Tiwari, M. K., and Shirage, P. M., A Comprehensive Review on Advancements in Catalysts for Aluminum-Air Batteries, J Power Sources, Vol. 616, 2024, pp. 235101.
[23] Castro, M. T., Ocon, J. D., Numerical Modeling and Performance Analysis of an Acid-Alkaline Aluminum-Air Cell, Electrochim Acta, Vol. 440, 2023, pp. 141729, doi:https://doi.org/10.1016/j.electacta.2022.141729.
[24] Liu, Y., Sun, Q., Li, W., Adair, K. R., Li, J., and Sun, X., A Comprehensive Review on Recent Progress in Aluminum–Air Batteries. Green Energy & Environment, Vol. 2, 2017, pp. 246–277.
[25] Roche, I., Chaînet, E., Chatenet, M., and Vondrák, J., Carbon-Supported Manganese Oxide Nanoparticles as Electrocatalysts for the Oxygen Reduction Reaction (ORR) in Alkaline Medium: Physical Characterizations and ORR Mechanism. The Journal of Physical Chemistry C, Vol. 111, 2007, pp. 1434–1443.
[26] Cui, B., Lin, H., Li, J., Li, X., Yang, J., and Tao, J., Core–Ring Structured NiCo2O4 Nanoplatelets: Synthesis, Characterization, and Electrocatalytic Applications. Adv Funct Mater, Vol. 18, 2008, pp. 1440–1447.
[27] Wu, N. L., Liu, W. R., and Su, S. J., Effect of Oxygenation on Electrocatalysis of La0. 6Ca0. 4CoO3− x in Bifunctional Air Electrode. Electrochim Acta, Vol. 48, 2023, pp. 1567–1571.
[28] Zhao, R., He, P., Yu, F., Yang, J., Sun, Z., and Hu, W., Performance Improvement for Aluminum-Air Battery by Using Alloying Anodes Prepared from Commercially Pure Aluminum, J. Energy Storage, Vol. 73, 2023, pp. 108985, doi:https://doi.org/10.1016/j.est.2023.108985.
[29] Xie, J., He, P., Zhao, R., and Yang, J., Numerical Modeling and Analysis of the Performance of an Aluminum-Air Battery with Alkaline Electrolyte, Processes, Vol. 8, 2020, pp. 658.
[30] Chen, Y., Liu, Y., Du, W., Li, Q., Wang, H., Li, Q., Wu, Q., and Qin, G., Identification of the Parameters of the Aluminum-Air Battery with Regard to Temperature. J Energy Storage, Vol. 88, 2024, pp. 111397.
[31] Zhu, C., Yan, L., Han, Y., Luo, L., Guo, J., Xiang, B., Zhou, Y., Zou, X., Guo, L., and Bai, Y., Synergistic Modulation of Alkaline Aluminum-Air Battery Based on Localized Water-in-Salt Electrolyte towards Anodic Self-Corrosion, Chemical Engineering Journal, Vol. 485, 2024, pp. 149600.
[32] Zhang, Y., Lv, C., Zhu, Y., Kuang, J., Wang, H., Li, Y., and Tang, Y., Challenges and Strategies of Aluminum Anodes for High‐Performance Aluminum–Air Batteries, Small Methods, Vol. 8, 2024, pp. 2300911.
[33] Saadat, M., Kheradmand, S., Enhanced Electrochemical Performance of Aluminum-Air Batteries Using Graphite and Graphene Oxide Electrocatalysts Doped with Nitrogen, Sulfur, and Phosphorus, Arab J. Sci Eng, 2024, doi:10.1007/s13369-024-09607-0.
[34] Sun, H., Hu, Z., Yao, C., Yu, J., and Du, Z., Silver Doped Amorphous MnO2 as Electrocatalysts for Oxygen Reduction Reaction in Al-Air Battery, J. Electrochem Soc, Vol. 167, 2020, pp. 080539.
[35] Goel, P., Dobhal, D., and Sharma, R. C., Aluminum–Air Batteries: A Viability Review, J. Energy Storage, Vol. 28, 2020, pp. 101287.
[36] Wang, K., Zhu, Z., Xu, D., Li, M., Yuan, S., and Wang, H., Highly Active and Cheap Graphite/Polytetrafluoroethylene Composite Coating Cathodes for Electrogeneration of Hydrogen Peroxide, Clean Technol Environ Policy, Vol. 24, 2022, pp. 2407–2417, doi:10.1007/s10098-022-02323-z.
[37] Kitamura, T., Okabe, S., Tanigaki, M., Kurumada, K., Ohshima, M., and Kanazawa, S., Morphology Change in Polytetrafluoroethylene (PTFE), Porous Membrane Caused by Heat Treatment, Polym Eng Sci, Vol. 40, 2000, pp. 809–817.
[38] Mack, F., Klages, M., Scholta, J., Jörissen, L., Morawietz, T., Hiesgen, R., Kramer, D., and Zeis, R., Morphology Studies on High-Temperature Polymer Electrolyte Membrane Fuel Cell Electrodes, J. Power Sources, Vol. 255, 2014, pp. 431–438, doi:https://doi.org/10.1016/j.jpowsour.2014.01.032.
[39] Phillips, C., Al-Ahmadi, A., Potts, S. J., Claypole, T., and Deganello, D., The Effect of Graphite and Carbon Black Ratios on Conductive Ink Performance, J. Mater Sci, Vol. 52, 2017, pp. 9520–9530.
[40] Marsh, H., Heintz, E. A., and Rodríguez-Reinoso, F., Introduction to Carbon Technologies; Publicaciones de la Universidad de Alicante, Universidad de Alicante, 1997, ISBN 9788479083175.
[41] Kinoshita, K., Carbon: Electrochemical and Physicochemical Properties, 1988.
[42] Liu, B., Dai, Y. K., Li, L., Zhang, H. D., Zhao, L., Kong, F. R., Sui, X. L., Wang, Z. B., Effect of Polytetrafluoroethylene (PTFE) in Current Collecting Layer on the Performance of Zinc-Air Battery, Progress in Natural Science: Materials International, Vol. 30, 2020, pp. 861–867.
[43] Leone, P., Santarelli, M., Asinari, P., Calì, M., and Borchiellini, R., Experimental Investigations of the Microscopic Features and Polarization Limiting Factors of Planar SOFCs with LSM and LSCF Cathodes, J. Power Sources, Vol. 177, 2008, pp. 111–122.
[44] Harting, K., Kunz, U., and Turek, T., Zinc-Air Batteries: Prospects and Challenges for Future Improvement, Zeitschrift für Physikalische Chemie, Vol. 226, 2012, pp. 151–166.
[45] Park, G. G., Sohn, Y. J., Yang, T. H., Yoon, Y. G., Lee, W. Y., and Kim, C. S., Effect of PTFE Contents in the Gas Diffusion Media on the Performance of PEMFC, J. Power Sources, Vol. 131, 2024, pp. 182–187.
[46] Daino, M. M., Kandlikar, S. G., 3D Phase-Differentiated GDL Microstructure Generation with Binder and PTFE Distributions, Int J. Hydrogen Energy, Vol. 37, 2012, pp. 5180–5189.
[47] Matsena, M. T., Mabuse, M., Tichapondwa, S. M., and Chirwa, E. M. N., Improved Performance and Cost Efficiency by Surface Area Optimization of Granular Activated Carbon in Air-Cathode Microbial Fuel Cell, Chemosphere, Vol. 281, 2021, pp. 130941.
[48] Barroso Bogeat, A., Understanding and Tuning the Electrical Conductivity of Activated Carbon: A State-of-the-Art Review. Critical Reviews in Solid State and Materials Sciences, Vol. 46, 2021, pp. 1–37.
[49] González, A., Goikolea, E., Barrena, J. A., and Mysyk, R., Review on Supercapacitors: Technologies and Materials. Renewable and Sustainable Energy Reviews, Vol. 58, 2016, pp. 1189–1206.
[50] Simon, P., Burke, A., Nanostructured Carbons: Double-Layer Capacitance and More, Electrochem Soc Interface, Vol. 17, 2008, pp. 38.
[51] Xu, C., Liu, X., Sumińska-Ebersoldt, O., Passerini, S., Al−Air Batteries for Seasonal/Annual Energy Storage: Progress Beyond Materials. Batter Supercaps, Vol. 7, 2024, pp. e202300590, doi:https://doi.org/10.1002/batt.202300590.