سنتز چندجزئیتک ظرفیمشتقات کرومنو-پیریدو-پیریمیدینون با استفاده از کاتالیست هتروژنی مبتنی بر زیرکونیوم
محورهای موضوعی : شیمی و مهندسی شیمی کلیه گرایش هافاطمه خجسته 1 , ناهید شجری 2 * , پروین اسکندری 3 , محمدرضا فرهپور 4 , حوریه یحیایی 5
1 - گروه شیمی، واحد زنجان، دانشگاه آزاد اسلامی، زنجان، ایران
2 - گروه شیمی، واحد زنجان،دانشگاه آزاد اسلامی، زنجان، ایران
3 - گروه شیمی، واحد زنجان، دانشگاه آزاد اسلامی، زنجان، ایران
4 - گروه دامپزشکی، واحد ارومیه، دانشگاه آزاد اسلامی، ارومیه، ایران
5 - گروه شیمی، واحد زنجان، دانشگاه آزاد اسلامی، زنجان، ایران
کلید واژه: واکنشهای چند جزئی, کاتالیست هتروژنی, پیریدوپیریمیدین, سنتز سبز,
چکیده مقاله :
در این مطالعه، روشی کارآمد و سبز برای سنتز مشتقات 7-آریل، کرومنو[4,3-d]پیریدو[1,2-a] پیریمیدین 6-اون با استفاده از کاتالیست هتروژنی ZrO(NO3)2.2H2O ارائه شده است. این روش شامل واکنش چندجزئی یکمرحلهای میان هیدروکسی کومارین، بنزآلدئید آروماتیک و 2-آمینو پیریدین در حلال اتانول میباشد. نتایج نشاندهنده بازده بالا و کارایی کاتالیست در زمان واکنش کوتاه است. مکانیسم سنتز شامل پروتوناسیون و واکنشهای پیچیدهای مانند تراکم و افزودن مایکل است که به تولید ترکیبات با خواص بیولوژیکی مطلوب منجر میشود. این روش نه تنها مراحل سنتز را کاهش میدهد، بلکه با استفاده از کاتالیستهای دوستدار محیط زیست، به اهداف پایدارسازی در شیمی آلی نزدیکتر میشود. بهطور کلی، این مطالعه یک راهکار مؤثر و پایدار برای سنتز ترکیبات هتروسیکلیک معرفی میکند که میتواند جایگزین روشهای سنتزی موجود باشد
In this study, an efficient and green method for the synthesis of 7-Aryl, Chromeno[4,3-d] Pyrido [1,2-a] Pyrimidin-6-ones using the heterogeneous catalyst ZrO(NO3)2.2H2O is presented. This approach involves a one-pot multicomponent reaction among hydroxycoumarin, aromatic benzaldehydes, and 2-amino pyridine in ethanol solvent. The results demonstrate high yields and catalyst efficiency within a short reaction time. The synthesis mechanism includes protonation and complex reactions such as condensation and Michael addition, leading to the production of compounds with desirable biological properties. This method not only reduces the steps in synthesis but also aligns green chemistry principles by employing environmentally friendly catalysts, moving closer to sustainability goals in organic chemistry. Overall, this study introduces an effective and sustainable strategy for synthesizing heterocyclic compounds that can serve as a replacement for existing synthetic methods
1. Cores, Á., Clerigué, J., Orocio-Rodríguez, E., & Menéndez, J. C. (2022). Multicomponent reactions for the synthesis of active pharmaceutical ingredients. Pharmaceuticals, 15(8), 1009
2. Payamifar, S., Abdouss, M., & Marjani, A. P. (2024). Recent advances in β-cyclodextrin-based catalyst systems for the synthesis of heterocyclic compounds via multicomponent reactions (MCRs). Arabian Journal of Chemistry, 105967
3. Zeleke, D., & Damena, T. (2024). Advance in green synthesis of pharmacological important heterocycles using multicomponent reactions and magnetic nanocatalysts (MNCs). Results in Chemistry, 7, 101283
4. Zhang, B., Guo, T., Li, Z., Kühn, F. E., Lei, M., Zhao, Z. K., ... & Li, C. (2022). Transition-metal-free synthesis of pyrimidines from lignin β-O-4 segments via a one-pot multi-component reaction. Nature Communications, 13(1), 3365
5. Rodrigues, M. O., Eberlin, M. N., & Neto, B. A. (2021). How and why to investigate multicomponent reactions mechanisms? A critical review. The Chemical Record, 21(10), 2762-2781
6. Climent, M. J., Corma, A., & Iborra, S. (2012). Homogeneous and heterogeneous catalysts for multicomponent reactions. RSC advances, 2(1), 16-58
7. Isambert, N., Duque, M. D. M. S., Plaquevent, J. C., Genisson, Y., Rodriguez, J., & Constantieux, T. (2011). Multicomponent reactions and ionic liquids: a perfect synergy for eco-compatible heterocyclic synthesis. Chemical Society Reviews, 40(3), 1347-1357
8. Wang, Z., & Domling, A. (2022). Multicomponent reactions in medicinal chemistry. Multicomponent Reactions towards Heterocycles: Concepts and Applications, 91-137
9. Nasiriani, T., Javanbakht, S., Nazeri, M. T., Farhid, H., Khodkari, V., & Shaabani, A. (2022). Isocyanide-based multicomponent reactions in water: Advanced green tools for the synthesis of heterocyclic compounds. Topics in Current Chemistry, 380(6), 50
10. Graziano, G., Stefanachi, A., Contino, M., Prieto-Díaz, R., Ligresti, A., Kumar, P., ... & Leonetti, F. (2023). Multicomponent reaction-assisted drug discovery: A time-and cost-effective green approach speeding up identification and optimization of anticancer drugs. International Journal of Molecular Sciences, 24(7), 6581
11. Pasricha, S., Mittal, K., Gahlot, P., Kaur, H., Avasthi, N., & Shweta. (2022). Multicomponent synthetic strategies and perspectives for synthesis of linked or fused coumarin heterocycles. Journal of the Iranian Chemical Society, 19(10), 4035-4092
12. Adimule, V. M., Nandi, S. S., Kerur, S. S., Khadapure, S. A., & Chinnam, S. (2022). Recent advances in the one-pot synthesis of coumarin derivatives from different starting materials using nanoparticles: a review. Topics in Catalysis, 1-31
13. Ramiro, J. L., Marcos, C. F., & Neo, A. G. (2024). Synthesis of coumarin dimers by a microwave-assisted double multicomponent reaction. Sustainable Chemistry and Pharmacy, 42, 101792
14. Soumya, T. V., Ajmal, C. M., & Bahulayan, D. (2017). Synthesis of bioactive and fluorescent pyridine-triazole-coumarin peptidomimetics through sequential click-multicomponent reactions. Bioorganic & Medicinal Chemistry Letters, 27(3), 450-455
15. Vitório, F., Pereira, T. M., Castro, R. N., Guedes, G. P., Graebin, C. S., & Kümmerle, A. E. (2015). Synthesis and mechanism of novel fluorescent coumarin–dihydropyrimidinone dyads obtained by the Biginelli multicomponent reaction. New Journal of Chemistry, 39(3), 2323-2332
16. Vanam, R., Allam, V., Nerella, S., & Gavaji, B. (2021). Green Synthesis of Chromene Congeners via Multi‐Component Reaction and Their Antimicrobial Studies. ChemistrySelect, 6(36), 9591-9598
17. Sayahi, M. H., Afrouzandeh, Z., & Bahadorikhalili, S. (2022). Cu (OAc) 2 catalyzed synthesis of novel chromeno [4, 3-b] pyrano [3, 4-e] pyridine-6, 8-dione derivatives via a one-pot multicomponent reaction in water under mild reaction conditions. Polycyclic Aromatic Compounds, 42(6), 3391-3400
18. Rezvanian, A., Amoozadkhalili, F., & Roosta, A. (2021). Sequential four-component protocol for the synthesis of pyrido [1, 2-a] pyrimidin-6-one derivatives in water. Chemical Papers, 75, 2417-2424
19. Benazzouz, A., Makhloufi-Chebli, M., Khatir-Hamdi, N., Boutemeur-Khedis, B., Silva, A. M., & Hamdi, M. (2015). A facile synthesis of new coumarin-3, 4-dihydropyrimidin-2 (1H)-ones/thiones dyads. Tetrahedron, 71(23), 3890-3894
20. Kumari, P., Yadav, R., Bharti, R., & Parvin, T. (2020). Regioselective synthesis of pyrimidine-fused tetrahydropyridines and pyridines by microwave-assisted one-pot reaction. Molecular Diversity, 24, 107-117
21. Ali, M. A. E. A. A. (2015). Bismuth triflate: A highly efficient catalyst for the synthesis of bio-active coumarin compounds via one-pot multi-component reaction. Chinese Journal of Catalysis, 36(7), 1124-1130
22. Jelali, H., Chakchouk-Mtibaa, A., Baklouti, L., Bilel, H., Bathich, Y., Mellouli, L., & Hamdi, N. (2019). Development of New Multicomponent Reactions in Eco‐Friendly Media‐Greener Reaction and Expeditious Synthesis of Novel Bioactive Benzylpyranocoumarins. Journal of Chemistry, 2019(1), 8693614
23. Bosica, G., & Abdilla, R. (2022). Recent advances in multicomponent reactions catalysed under operationally heterogeneous conditions. Catalysts, 12(7), 725
24. Bosica, G., & Abdilla, R. (2022). Recent advances in multicomponent reactions catalysed under operationally heterogeneous conditions. Catalysts, 12(7), 725
25. Pasuparthy, S. D., & Maiti, B. (2022). [CMMIM][BF4–] Ionic Liquid-Catalyzed Facile, One-Pot Synthesis of Chromeno [4, 3-d] pyrido [1, 2-a] pyrimidin-6-ones: Evaluation of Their Photophysical Properties and Theoretical Calculations. ACS omega, 7(43), 39147-39158
26. Pasuparthy, S. D., & Maiti, B. (2022). [CMMIM][BF4–] Ionic Liquid-Catalyzed Facile, One-Pot Synthesis of Chromeno [4, 3-d] pyrido [1, 2-a] pyrimidin-6-ones: Evaluation of Their Photophysical Properties and Theoretical Calculations. ACS omega, 7(43), 39147-39158
27. Saberi-Zare, M., & Bodaghifard, M. A. (2025). Acid-decorated chitosan-magnetic aluminum ferrite as a bionanocomposite catalyst for green synthesis of biologically active [4, 3 d] pyrido [1, 2 a] pyrimidin-6 ones. Scientific Reports, 15(1), 3408
28. Khalaj, M., Taherkhani, M., & Kalhor, M. (2021). Preparation of some chromeno [4, 3-d] pyrido [1, 2-a] pyrimidine derivatives by ultrasonic irradiation using NiFe 2 O 4@ SiO 2 grafted di (3-propylsulfonic acid) nanoparticles. New Journal of Chemistry, 45(24), 10718-10724