بررسی جامع زیست حسگرهای نوری
محورهای موضوعی : کاربرد شیمی در محیط زیستnoushin dadashzadeh 1 * , ناصر مصلحی میلانی 2
1 - Department of physics, Faculty of physics,Hadishahr Branch, Islamic Azad University,jolfa, Iran.
2 - گروه فیزیک، واحد اهر، دانشگاه آزاد اسلامی، اهر، ایران
کلید واژه: انواع زیست حسگرهای نوری, کاربرد زیست حسگرهای نوری, تشدید پلاسمون سطحی,
چکیده مقاله :
حسگرها، عملکرد ارزشمندی را در مطالعات زیست محیطی، کشاورزی، بازرسی و ایمنی مواد غذایی، پاسخ سریع و مقرون به صرفه در بیوتکنولوژی، تشخیص بیماری و خدمات پزشکی و ... از خود نشان دادهاند. از میان بسیاری از دستههای حسگرها، حسگرهای زیستی نوری به دلیل اندازهگیریهای انتخابی، سریع و بسیار حساس خود، دارای مزایای اضافی مانند استحکام، قابلیت اطمینان و پتانسیل ادغام بر روی تراشه هستند. در مورد حسگرهای زیستی نوری، آنالیت با استفاده از نور با تکنیکهای مبتنی بر برچسب یا بدون برچسب شناسایی میشود. در این مقاله برخی از پیشرفتهای قابل توجه در دهه گذشته در زمینه حسگرهای زیستی نوری با تاکید بر رویکردهای ساخت آنها و حوزههای کاربردی رو به رشد، بررسی شده است. همراه با برخی از مقالههای با دقت انتخاب شده در مورد پیشرفتهای جدید در حسگرهای زیستی نوری مروری کوتاه از حسگرهای زیستی نوری از زمان پیشرفت نیز ارائه شده است. همچنین چالشها و آینده فناوریهای حسگر زیستی نوری در حال ظهور در دهه جاری ارائه شده است.
Sensors have shown valuable performance in environmental studies, agriculture, inspection and food safety, quick and cost-effective response in biotechnology, disease diagnosis and medical services, etc. Among the many categories of sensors, optical biosensors have additional advantages such as robustness, reliability, and the potential for on-chip integration due to their selective, rapid, and highly sensitive measurements. Biosensors are analytical tools used for the detection of specific analytes such as cholesterol, urea, etc. that have biomolecules such as nucleic acids, proteins, carbohydrates as key elements for the detection of these analytes along with transducers and data analysis and visualization tools. In the case of optical biosensors, the analyte is detected using light with either label-based or label-free techniques. In this paper, some of the significant advances in the field of optical biosensors in the past decade are reviewed, with an emphasis on their fabrication approaches and growing application areas. Along with some carefully selected articles on new developments in optical biosensors in the past decade, a brief overview of optical biosensors since their development is also provided. Another focus of the current review is the classification of biosensors, typical structures along with emerging advances in optical biosensing that are likely to dominate the current decade. Also, the challenges and future of emerging optical biosensor technologies in the current decade are presented.
[1] Bansi Dhar Malhotra, Md. Azahar Ali, Nanomaterials in biosensors: Fundamentals and applications, Nanomaterials for Biosensors (2018) 1–74.
[2] Pranveer Singh, Surface plasmon resonance: a boon for viral diagnostics. Reference Module, Life Sci. (2017).
[3] M. Scha¨ferling, Fluorescence-based biosensors, Encyclop. Anal. Chem. (2016) 1–52.
[4] Pavel Damborsky‘, Juraj Sˇvitel, Jaroslav Katrlı´k, Optical biosensors. Essays Biochem. 60 (1) (2016) 91–100.
[5] Boris G. Andryukov, Natalya N. Besednova, Roman V. Romashko, Tatyana S. Zaporozhets, Timofey A. Efimov, Label-free biosensors for laboratory-based diagnostics of infections: current achievements and new trends, Biosensors 10 (2) (2020) 11.
[6] Partha Sarathi Addy, Ahanjit Bhattacharya, Santi M. Mandal, Amit Basak, Label-assisted laser
desorption/ionization mass spectrometry (la-ldi-ms): an emerging technique for rapid detection of ubiquitous cis-1, 2-diol functionality, RSC Adv. 4 (87) (2014) 46555–46560.
[7] Baoyi Shao, Zhongdang Xiao, Recent achievements in exosomal biomarkers detection by nanomaterials-based optical biosensors-a review, Anal. Chim. Acta (2020).
[8] Eishu Hirata, Etsuko Kiyokawa, Future perspective of single molecule fret biosensors and intravital fret microscopy, Biophys. J. 111 (6) (2016) 1103–1111.
[9] Erwin Kretschmann, Die bestimmung optischer konstanten von metallen durch anregung von oberfla¨chenplasmaschwingungen, Zeitschrift fu¨r Physik A Hadrons and nuclei 241 (4) (1971) 313–324.
[10] Bo Liedberg, Claes Nylander, Ingemar Lunstro¨m, Surface plasmon resonance for gas detection and biosensing, Sens. Actuat. 4 (1983) 299–304.
[11] S. K. Shukla, C. S. Kushwaha, T. Guner and M. M. Demir, Opt. Pt. Laser Technol.,( 2019), 115, 404.
[12] H. E. Joe, H. Yun, S. H. Jo, M. B. G. Jun and B. K. Min, Int. J. Precis. Eng. Manuf. – Green Technol., (2018), 5, 173.
[13] Yong Zhao, Rui-jie Tong, Feng Xia, Yun Peng, Current status of optical fiber biosensor based on surface plasmon resonance, Biosens. Bioelectron. 142 (2019) 111505.
[14] Xu-dong Wang, Otto S Wolfbeis, Fiber-optic chemical sensors and biosensors (2015–2019), Anal. Chem. 92 (1) (2019) 397–430.
[15] Yashar Esfahani Monfared, Overview of recent advances in the design of plasmonic fiber-optic biosensors, Biosensors 10 (7) (2020) 77.
[16] Ika Puspita, Ninik Irawati, Kartika Anoraga Madurani, Fredy Kurniawan, Sekartedjo Koentjoro, Agus Muhamad Hatta, Graphene-and multi-walled carbon nanotubes-coated tapered plastic optical fiber for detection of lard adulteration in olive oil, Photon. Sens. 12 (4) (2022) 1–10.
[17] Michael B. Maas, Giles H.C. Maybery, Willem J. Perold, Deon P. Neveling, Leon M.T. Dicks, Borosilicate glass fiber-optic biosensor for the detection of escherichia coli, Curr. Microbiol. 75 (2) (2018) 150–155.
[18] Zhou Chen, Sun Chengjun, Luo Zewei, Liu Kunping, Yang Xijian, Zou Haimin, Li Yongxin, Duan Yixiang, Fiber optic biosensor for detection of genetically modified food based on catalytic hairpin assembly reaction and nanocomposites assisted signal amplification, Sens. Actuat. B: Chem. 254 (2018) 956–965.
[19] Marzena Hirsch, Daria Majchrowicz, PawełWierzba, Matthieu Weber, Mikhael Bechelany, Małgorzata Jedrzejewska Szczerska, Low-coherence interferometric fiber-optic sensors with potential applications as biosensors, Sensors, 17(2) (2017) 261.
[20] Elena Benito-Pen˜a, Mayra Granda Valde´s, Bettina Glahn Martı´nez, Maria C. Moreno-Bondi, Fluorescence based fiber optic and planar waveguide biosensors. a review, Anal. Chim. Acta 943 (2016) 17–40.
[21] Ming-jie Yin, Gu Bobo, Quan-Fu An, Chengbin Yang, Yong Liang Guan, Ken-Tye Yong, Recent development of fiber optic chemical sensors and biosensors: Mechanisms, materials, micro/nano-fabrications and applications, Coord. Chem. Rev. 376 (2018) 348–392.
[22] Mildred S. Cano-Vela´zquez, Luz M. Lo´pez-Marı´n, Juan Herna´ndez-Cordero, Fiber optic biosensor based on polydimethylsiloxane (pdms) and bioactive lipids, Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XX, volume 11233, International Society for Optics and Photonics, 2020, p. 112330Y.
[23] Lin Zhou, Chen Liu, Zhengbo Sun, Hongju Mao, Lin Zhang, Yu Xuefeng, Jianlong Zhao, Xianfeng Chen, Black phosphorus based fiber optic biosensor for ultrasensitive cancer diagnosis, Biosens. Bioelectron. 137 (2019) 140–147.
[24] Md Rajibur Rahaman Khan, Apurva Vinodrao Watekar, Shin-Won Kang, Fiber-optic biosensor to detect ph and glucose, IEEE Sens. J. 18 (4) (2017) 1528–1538.
[25] Kun Liu, Jiahang Zhang, Junfeng Jiang, Xu Tianhua, Shuang Wang, Pengxiang Chang, Zhao Zhang, Jinying Ma, Tiegen Liu, Mose 2-au based sensitivity enhanced optical fiber surface plasmon resonance biosensor for detection of goat-anti-rabbit igg, IEEE Access 8 (2019) 660–668.
[26] John T. Gohring, Paul S. Dale, Xudong Fan, Detection of her2 breast cancer biomarker using the opto-fluidic ring resonator biosensor, Sens. Actuat. B: Chem. 146 (1) (2010) 226–230.
[27] Liaquat Ali, Mahmood Uddin Mohammed, Mahrukh Khan, Abdul Hamid Bin Yousuf, Masud H. Chowdhury, Highquality optical ring resonator-based biosensor for cancer detection, IEEE Sens. J. 20 (4) (2019) 1867–1875.
[28] Patrick Steglich, Marcel Hu¨lsemann, Birgit Dietzel, Andreas Mai, Optical biosensors based on silicon-on-insulator ring resonators: A review, Molecules 24 (3) (2019) 519.
[29] Ching-Wen Chang, Xu Xiaochuan, Swapnajit Chakravarty, Hui-Chun Huang, Tu Li-Wei, Quark Yungsung Chen, Hamed Dalir, Michael A. Krainak, Ray T. Chen, Pedestal subwavelength grating metamaterial waveguide ring resonator for ultra-sensitive label-free biosensing, Biosens. Bioelectron. 141 (2019) 111396.
[30] Kirill V. Voronin, Yury V. Stebunov, Artem A. Voronov, Aleksey V. Arsenin, Valentyn S. Volkov, Vertically coupled plasmonic racetrack ring resonator for biosensor applications, Sensors 20 (1) (2020) 203.
[31] Sascha Geidel, Sergio Peransi Llopis, Manuel Rodrigo, De Diego-Castilla, Antonio Sousa, Jo¨rg Nestler, Thomas Otto, Thomas Gessner, Victor Parro, et al, Integration of an optical ring resonator biosensor into a self-contained microfluidic cartridge with active, single-shot micropumps, Micromachines 7 (9) (2016) 153.
[32] Ahmad Mohebzadeh Bahabady, Saeed Olyaee, Hassan Arman, Optical biochemical sensor using photonic crystal nano-ring resonators for the detection of protein concentration, Curr. Nanosci. 13 (4) (2017) 421–425.
[33] Yong Liu, Yang Li, Mingyu Li, Jian-Jun He, High-sensitivity and wide-range optical sensor based on three cascaded ring resonators, Opt. Exp. 25 (2) (2017) 972–978.
[34] Yuze Sun, Xudong Fan, Optical ring resonators for biochemical and chemical sensing, Anal. Bioanal. Chem. 399 (1) (2011) 205–211.
[35] Xiaonan Han, Xiuyou Han, Yuchen Shao, Wu. Zhenlin, Yuxin Liang, Jie Teng, Shuhui Bo, Geert Morthier, Mingshan Zhao, Polymer integrated waveguide optical biosensor by using spectral splitting effect, Photon. Sens. 7 (2) (2017) 131–139.
[36] Nitesh Mudgal, Ankit Agarwal, Ankur Saharia, Sourabh Sahu, Ashish Kumar Ghunawat, Ghanshyam Singh, Comparative study of interferometer and ring resonator based biosensors: A review, in: Optical and Wireless Technologies, Springer, 2020, pp. 419–427.
[37] Rafael Casquel, Miguel Holgado, Marı´a F. Laguna, Ana L. Herna´ndez, Beatriz Santamarı´a, A´ lvaro Lavı´n, Luca Tramarin, Pedro Herreros, Engineering vertically interrogated interferometric sensors for optical label-free biosensing, Anal. Bioanal. Chem. (2020) 1–13.
[38] Kun Qin, Hu. Shuren, Scott T. Retterer, Ivan I. Kravchenko, Sharon M. Weiss, Slow light mach–zehnder interferometer as label-free biosensor with scalable sensitivity, Opt. Lett. 41 (4) (2016) 753–756.
[39] Soichiro Yoshida, Shintaro Ishihara, Taro Arakawa, Yasuo Kokubun, Highly sensitive optical biosensor based on silicon microring-resonator-loaded mach–zehnder interferometer, Jpn. J. Appl. Phys. 56(4S):04CH08 (2017).
[40] Marek Blahut, Model of the broadband interferometric optical biosensor in a planar configuration, Photon. Lett. Poland 12 (2) (2020) 28–30.
[41] Xuegang Li, Linh V Nguyen, Yong Zhao, Heike EbendorffHeidepriem, Stephen C Warren-Smith, High-sensitivity sagnac interferometer biosensor based on exposed core microstructured optical fiber, Sens. Actuat. B: Chem. 269 (2018) 103–109.
[42] Jesu´s Maldonado, M-Carmen Este´vez, Adria´n Ferna´ndezGavela, Juan Jose´ Gonza´lez-Lo´pez, Ana Bele´n Gonza´lezGuerrero, Laura M. Lechuga, Label-free detection of nosocomial bacteria using a nanophotonic interferometric biosensor, Analyst, 145 (2020)(2):497–506
[43] Dandan Sun, Fu Yongming, Yukun Yang, Label-free detection of breast cancer biomarker using silica microfiber interferometry, Opt. Commun. 463 (2020) 125375.
[44] Enxiao Luan, Hossam Shoman, Daniel M. Ratner, Karen C. Cheung, Lukas Chrostowski, Silicon photonic biosensors using label-free detection, Sensors 18 (10) (2018) 3519.
[45] P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm and F. F. Bier, Biosens. Bioelectron., 2014, 58, 287.
[46] Daphne´ Duval, Laura M. Lechuga, Optical waveguide biosensors. Photonics: Scientific Foundations, Technology and Applications, IV; Andrews, DL, Ed, pages 323–365, 2015. [64] Ikuo Uematsu, Ichiro Tohno, Shingo Kasai, Masaaki Hirakawa, Kayoko Omiya, Hidetoshi Matsumoto, Optical waveguide biosensors for highly sensitive and high-throughput applications, MRS Adv. 1 (11) (2016) 755–760.
[47] Gu¨nter Gauglitz, Critical assessment of relevant methods in the field of biosensors with direct optical detection based on fibers and waveguides using plasmonic, resonance, and interference effects, Anal. Bioanal. Chem. (2020) 1–33.
[48] Valery N. Konopsky, Elena V. Alieva, Imaging biosensor based on planar optical waveguide, Opt. Laser Technol. 115 (2019) 171–175.
[49] Ali Al-Jawdah, Alexei Nabok, Radhyah Jarrah, Alan Holloway, Anna Tsargorodska, Eszter Takacs, Andras Szekacs, Mycotoxin biosensor based on optical planar waveguide, Toxins 10 (7) (2018) 272.
[50] Zhao Jin, Weiming Guan, Chang Liu, Tianyu Xue, Qiyu Wang, Weitao Zheng, Xiaoqiang Cui, A stable and high resolution optical waveguide biosensor based on dense tio2/ag multilayer film, Appl. Surf. Sci. 377 (2016) 207–212.
[51] Khor Kang Nan, M.M. Shahimin, F.R.M. Adikan, Optimization of silicon nitride y-branch optical waveguide for evanescent field biosensor, Advanced Materials Research, volume 875, Trans Tech Publ, 2014, pp. 1183–1188.
[52] Oleksiy Krupin, Pierre Berini, Long-range surface plasmonpolariton waveguide biosensors for human cardiac troponin i detection, Sensors 19 (3) (2019) 631.
[53] Ali Al-Jawdah, Alexei Nabok, Hisham Abu-Ali, Gaelle Catanante, Jean-Louis Marty, Andras Szekacs, Highly sensitive label-free in vitro detection of aflatoxin b1 in an aptamer assay using optical planar waveguide operating as a polarization interferometer, Anal. Bioanal. Chem. 411 (29) (2019) 7717–7724.
[54] Liang Zeng, Jiaqi Li, Chengyi Cao, Xudong Li, Xinyuan Zeng, Yu Quanhao, Kunhua Wen, Jun Yang, Yuwen Qin, An integrated-plasmonic chip of bragg reflection and mach zehnder interference based on metal-insulator-metal waveguide, Photon. Sens. 12 (3) (2022) 1–10.
[55] Hakan Inan, Muhammet Poyraz, Fatih Inci, Mark A. Lifson, Murat Baday, Brian T. Cunningham, Utkan Demirci, Photonic crystals: emerging biosensors and their promise for point-of care applications, Chem. Soc. Rev. 46 (2) (2017) 366–388.
[56] Farzaneh Fathi, Mohammad-Reza Rashidi, Parvin Samadi Pakchin, Sohrab Ahmadi-Kandjani, Arash Nikniazi, Photonic crystal based biosensors: Emerging inverse opals for biomarker detection. Talanta, page 121615, 2020.
[57] Yixiong Zhao, Kunj Vora, Xuan Liu, Gerd vom Bo¨gel, Karsten Seidl, Jan C. Balzer, Photonic crystal resonator in the millimeter/terahertz range as a thin film sensor for future biosensor applications, J. Infrared, Millimeter, Terahertz Waves (2022) 1–19.
[58] Stanley M. Lo, Hu. Shuren, Girija Gaur, Yiorgos Kostoulas, Sharon M. Weiss, Philippe M. Fauchet, Photonic crystal microring resonator for label-free biosensing, Opt. Exp. 25 (6) (2017) 7046–7054.
[59] Silvia Romano, Annalisa Lamberti, Mariorosario Masullo, Erika Penzo, Stefano Cabrini, Ivo Rendina, Vito Mocella, Optical biosensors based on photonic crystals supporting bound states in the continuum, Materials 11 (4) (2018) 526.
[60] J. Divya, S. Selvendran, A. Sivanantha Raja, Photonic crystal based optical biosensor: a brief investigation, Laser Phys. 28 (6) (2018) 066206.
[61] Hamideh Mohsenirad, Saeed Olyaee, Mahmood Seifouri, Design of a new two-dimensional optical biosensor using photonic crystal waveguides and a nanocavity, Photon. Lasers Med. 5 (1) (2016) 51–56.
[62] Keigo Aono, Shoma Aki, Kenji Sueyoshi, Hideaki Hisamoto, Tatsuro Endo, Development of optical biosensor based on photonic crystal made of tio2 using liquid phase deposition, Jpn. J. Appl. Phys. 55 (8S3) (2016) 08RE01.
[63] Bouras Mounir, Charik Haouari, Allal Saı¨d, Abdesselam Hocini, Analysis of highly sensitive biosensor for glucose based on a one-dimensional photonic crystal nanocavity, Opt. Eng. 58 (2) (2019) 027102.
[64] Md Rabiul Hasan, Sanjida Akter, Ahmmed A. Rifat, Sohel Rana, Kawsar Ahmed, Rajib Ahmed, Harish Subbaraman, Derek Abbott, Spiral photonic crystal fiber-based dualpolarized surface plasmon resonance biosensor, IEEE Sens. J. 18 (1) (2017) 133–140.
[65] O. Mohamed Farhat, Yassmin K.A. Hameed, Abdelhamid A. Alrayk, Walid S Shaalan, El Deeb, Salah S.A. Obayya, Design of highly sensitive multichannel bimetallic photonic crystal fiber biosensor, J. Nanophoton. 10 (4) (2016) 046016.
[66] Ahmmed A. Rifat, Md Rabiul Hasan, Rajib Ahmed, Haider Butt, Photonic crystal fiber-based plasmonic biosensor with external sensing approach, J. Nanophoton. 12 (1) (2017) 012503.
[67] Witold Nawrot, Kamila Drzozga, Sylwia Baluta, Joanna Cabaj, Karol Malecha, A fluorescent biosensors for detection vital body fluids’ agents, Sensors 18 (8) (2018) 2357.
[68] Yoon Jeong, Yun-Min Kook, Kangwon Lee, Won-Gun Koh, Metal enhanced fluorescence (mef) for biosensors: General approaches and a review of recent developments, Biosens. Bioelectron. 111 (2018) 102–116.
[69] Koyeli Girigoswami, Najim Akhtar, Nanobiosensors and fluorescence based biosensors: An overview, Int. J. Nano Dimens. 10 (1) (2019) 1–17.
[70] Manisha Devi, Application of 2d nanomaterials as fluorescent biosensors, in: Adapting 2D Nanomaterials for Advanced Applications, ACS Publications, 2020, pp. 117–141.
[71] Fu-Lun Chen, Yu-Jui Fan, Jia-De Lin, Yu-Cheng Hsiao, Label-free, color-indicating, and sensitive biosensors of cholesteric liquid crystals on a single vertically aligned substrate, Biomed. Opt. Exp. 10 (9) (2019) 4636–4642.
[72] Roman Viter, Alla Tereshchenko, Valentyn Smyntyna, Julia Ogorodniichuk, Nickolay Starodub, Rositsa Yakimova, Volodymyr Khranovskyy, Arunas Ramanavicius, Toward development of optical biosensors based on photoluminescence of tio2 nanoparticles for the detection of salmonella, Sens. Actuat. B: Chem. 252 (2017) 95–102.
[73] Xin Cui, Lei Zhu, Wu. Jing, Yu. Hou, Peiyao Wang, Zhenni Wang, Mei Yang, A fluorescent biosensor based on carbon dots-labeled oligodeoxyribonucleotide and graphene oxide for mercury (ii) detection, Biosens. Bioelectron. 63 (2015) 506–512.
[74] Hu Rong, Tao Liu, Xiao-Bing Zhang, Shuang-Yan Huan, Wu. Cuichen, Fu. Ting, Weihong Tan, Multicolor fluorescent biosensor for multiplexed detection of dna, Anal. Chem. 86 (10) (2014) 5009–5016.
[75] Yichong Fan, Merna Makar, Michael X. Wang, Hui-wang Ai, Monitoring thioredoxin redox with a genetically encoded red fluorescent biosensor, Nat. Chem. Biol., 13(9):1045, 2017.
[76] Kun Yin, Wu Yixuan, Shasha Wang, Lingxin Chen, A sensitive fluorescent biosensor for the detection of copper ion inspired by biological recognition element pyoverdine, Sens. Actuat. B: Chem. 232 (2016) 257–263.
[77] Camille Pre´vel, Laetitia Kurzawa, Thi Nhu Ngoc Van, May C. Morris, Fluorescent biosensors for drug discovery new tools for old targets–screening for inhibitors of cyclin-dependent kinases, Eur. J. Med. Chem. 88 (2014) 74–88.
[78] Banshi D. Gupta, Ravi Kant, Recent advances in surface plasmon resonance based fiber optic chemical and biosensors utilizing bulk and nanostructures, Optics & Laser Technology 101 (2018) 144–161.
[79] Ewa Gorodkiewicz, Zenon Lukaszewski, Recent progress in surface plasmon resonance biosensors (2016 to mid-2018), Biosensors 8 (4) (2018) 132.
[80] Gaoling Liang, Zewei Luo, Kunping Liu, Yimin Wang, Jianxiong Dai, Yixiang Duan, Fiber optic surface plasmon resonance–based biosensor technique: fabrication, advancement, and application, Critical reviews in analytical chemistry 46 (3) (2016) 213–223.
[81] Jie Cao, Tu Minh Hieu, Tong Sun, Kenneth T.V. Grattan, Wavelength-based localized surface plasmon resonance optical fiber biosensor, Sensors and Actuators B: Chemical 181 (2013) 611–619.
[82] Wei Gong, Shouzhen Jiang, Zhen Li, Chonghui Li, Xu. Jihua, Jie Pan, Yanyan Huo, Baoyuan Man, Aihua Liu, Chao Zhang, Experimental and theoretical investigation for surface plasmon resonance biosensor based on graphene/au film/d-pof, Optics express 27 (3) (2019) 3483–3495.
[83] M. Saifur Rahman, Md Rabiul Hasan, Khaleda Akter Rikta, M.S. Anower, A novel graphene coated surface plasmon resonance biosensor with tungsten disulfide (ws2) for sensing dna hybridization, Opt. Mater. 75 (2018) 567–573.
[84] Angad S. Kushwaha, Anil Kumar, Rajeev Kumar, Monika Srivastava, S.K. Srivastava, Zinc oxide, gold and graphene based surface plasmon resonance (spr) biosensor for detection of pseudomonas like bacteria: a comparative study, Optik 172 (2018) 697–707.
[85] Chandra Prakash Gupta and Amit Kumar Singh. Recent advancements in the applications of zno: A versatile material. In Nanotechnology, pages 175–188. CRC Press, 2022.
[86] Taka-aki Yano, Taira Kajisa, Masayuki Ono, Yoshiya Miyasaka, Yuichi Hasegawa, Atsushi Saito, Kunihiro Otsuka, Ayuko Sakane, Takuya Sasaki, Koji Yasutomo, et al, Ultrasensitive detection of sars-cov-2 nucleocapsid protein using large gold nanoparticle-enhanced surface plasmon resonance, Scientific reports 12 (1) (2022) 1–8.
[87] Faten Bashar Kamal Eddin and Yap Wing Fen. The principle of nanomaterials based surface plasmon resonance biosensors and its potential for dopamine detection. Molecules, 25 (12):2769, 2020.
[88] Peyman Jahanshahi, Erfan Zalnezhad, Shamala Devi Sekaran, and Faisal Rafiq Mahamd Adikan. Rapid immunoglobulin m-based dengue diagnostic test using surface plasmon resonance biosensor, Scientific reports 4 (2014) 3851.
[89] N. Mudgal, Ankur Saharia, Ankit Agarwal, Jalil Ali, Preecha Yupapin, G. Singh, Modeling of highly sensitive surface plasmon resonance (spr) sensor for urine glucose detection, Opt. Quant. Electron. 52 (6) (2020) 1–14.
[90] N. Mudgal, Ankur Saharia, Ankit Agarwal, G. Singh, Zno and bi-metallic (ag–au) layers based surface plasmon resonance (spr) biosensor with batio3 and graphene for biosensing applications, IETE Journal of Research (2020) 1–8.
[91] Hoang Hiep Nguyen, Jeho Park, Sebyung Kang, and Moonil Kim. Surface plasmon resonance: a versatile technique for biosensor applications. Sensors, 15(5):10481–10510, 2015.
[92] Hani A. Alhadrami, Biosensors: Classifications, medical applications, and future prospective, Biotechnology and applied biochemistry 65 (3) (2018) 497–508.
[93] Seung Min Yoo, Sang Yup Lee, Optical biosensors for the detection of pathogenic microorganisms, Trends in biotechnology 34 (1) (2016) 7–25.
[94] Yu Sha, Liyun Ding, Haitao Lin, Wu Wei, Jun Huang, A novel optical fiber glucose biosensor based on carbon quantum dotsglucose oxidase/cellulose acetate complex sensitive film, Biosens. Bioelectron. 146 (2019) 111760.
[95] Alireza Gharatape, Ahmad Yari Khosroushahi, Optical biomarker-based biosensors for cancer/infectious disease medical diagnoses, Applied Immunohistochemistry & Molecular Morphology 27 (4) (2019) 278–286.
[96] Vivian Garzo´n, Daniel G. Pinacho, Rosa-Helena Bustos, Gustavo Garzo´n, Sandra Bustamante, Optical biosensors for therapeutic drug monitoring, Biosensors 9 (4) (2019) 132.
[97] Adria´n Ferna´ndez Gavela, Daniel Grajales Garcı´a, Jhonattan C Ramirez, and Laura M Lechuga. Last advances in siliconbased optical biosensors. sensors, 16(3):285, 2016.
[98] Su.dha.J. Kulkarni, Meena S. Karve, Fabrication of enzymebased optical biosensor for estimation of inorganic phosphate in a urine sample. SN, Applied Sciences 2 (2020) 1–8.
[99] Teresa Ramon-Marquez, Antonio L. Medina-Castillo, Alberto Fernandez-Gutierrez, Jorge F. Fernandez-Sanchez, A novel optical biosensor for direct and selective determination of serotonin in serum by solid surface-room temperature phosphorescence, Biosens. Bioelectron. 82 (2016) 217–223.
[100] Tatsuro Endo, Hiroshi Kajita, Yukio Kawaguchi, Terumasa Kosaka, Toshiyuki Himi, Label-free optical detection of creactive protein by nanoimprint lithography-based 2d-photonic crystal film, Biotechnol. J. 11 (6) (2016) 831–837.
[101] Amit Kumar Singh, Sandeep Kumar Jha, Fabrication and validation of a handheld non-invasive, optical biosensor for self-monitoring of glucose using saliva, IEEE Sens. J. 19 (18) (2019) 8332–8339.
[102] Hui Jiang, Donglei Jiang, Jingdong Shao, Xiulan Sun, Jiasheng Wang, High-throughput living cell-based optical biosensor for detection of bacterial lipopolysaccharide (lps) using a red fluorescent protein reporter system, Scientific reports 6 (2016) 36987.
[103] Colin S. Thompson, Imelda M. Traynor, Terence L. Fodey, Dermot V. Faulkner, Steven R.H. Crooks, Screening method for the detection of residues of amphenicol antibiotics in bovine, ovine and porcine kidney by optical biosensor, Talanta 172 (2017) 120–125.
[104] Yinghui Chen. Upconversion nanoparticle based optical biosensor for the detection of molecular biomarkers. PhD thesis, School of Mathematical and Physical Sciences,Faculty of Science, University of Technology Sydney, 2019.
[105] Ebru Akdog˘an and Mehmet Mutlu. Basic principles of optical biosensors in food engineering. Biosensors in food processing, safety, and quality control, pages 53–70, 2010.
[106] Nishtha Khansili, Gurdeep Rattu, Prayaga M. Krishna, Labelfree optical biosensors for food and biological sensor applications, Sensors and Actuators B: Chemical 265 (2018) 35–49.
[107] Hana Vaisocherova´-Lı´salova´, Ivana Vı´sˇova´, Maria Laura Ermini, Toma´sˇ Sˇpringer, Xue Chadtova´ Song, Jan Mra´zek, Josefı´na Lamacˇova´, N Scott Lynn Jr, Petr Sˇediva´k, and Jirˇı´ Homola. Low-fouling surface plasmon resonance biosensor for multi-step detection of foodborne bacterial pathogens in complex food samples. Biosensors and Bioelectronics, 80:84– 90, 2016.
[108] Naama Massad-Ivanir, Giorgi Shtenberg, Nitzan Raz, Christel Gazenbeek, Dries Budding, Martine P Bos, and Ester Segal. Porous silicon-based biosensors: Towards real-time optical detection of target bacteria in the food industry. Scientific reports, 6:38099, 2016.
[109] Katrina Campbell, Paul Barnes, Simon A. Haughey, Cowan Higgins, Kentaro Kawatsu, Vitor Vasconcelos, Christopher T. Elliott, Development and single laboratory validation of an optical biosensor assay for tetrodotoxin detection as a tool to combat emerging risks in european seafood, Analytical and bioanalytical chemistry 405 (24) (2013) 7753–7763.
[110] Daniel Chalupowicz, Boris Veltman, Samir Droby, Evgeni Eltzov, Evaluating the use of biosensors for monitoring of penicillium digitatum infection in citrus fruit, Sensors and Actuators B: Chemical 311 (2020) 127896.
[111] Saurabh Gupta, Sounik Sarkar, Alexandros Katranidis, Jaydeep Bhattacharya, Development of a cell-free optical biosensor for detection of a broad range of mercury contaminants in water: a plasmid dna-based approach, ACS omega 4 (5) (2019) 9480–9487.
[112] Fatima Mustafa, Silvana Andreescu, Chemical and biological sensors for food-quality monitoring and smart packaging, Foods 7 (10) (2018) 168.
[113] Mircea Tric, Mario Lederle, Lisa Neuner, Igor Dolgowjasow, Philipp Wiedemann, Stefan Wo¨lfl, Tobias Werner, Optical biosensor optimized for continuous in-line glucose monitoring in animal cell culture, Anal. Bioanal. Chem. 409 (24) (2017) 5711–5721.
[114] Monika Kundu, P Krishnan, RK Kotnala, and Gajjala Sumana. Recent developments in biosensors to combat agricultural challenges and their future prospects. Trends in food science & technology, 88:157–178, 2019.
[115] G. Murugaboopathi, V. Parthasarathy, C. Chellaram, T. Prem Anand, S. Vinurajkumar, Applications of biosensors in food industry, Biosciences Biotechnology Research Asia 10 (2) (2013) 711–714.
[116] Jasmina Vidic, Marisa Manzano, Chung-Ming Chang, Nicole Jaffrezic-Renault, Advanced biosensors for detection of pathogens related to livestock and poultry, Veterinary research 48 (1) (2017) 1–22.
[117] Neelam Verma, Ashish Kumar Singh, Pawanjit Kaur, Biosensor based on ion selective electrode for detection of larginine in fruit juices, Journal of analytical chemistry 70 (9) (2015) 1111–1115.
[118] Mojtaba Arjmand, Hossein Saghafifar, Mahdi Alijanianzadeh, Mahmood Soltanolkotabi, A sensitive tapered-fiber optic biosensor for the label-free detection of organophosphate pesticides, Sensors and Actuators B: Chemical 249 (2017) 523–532
[119] Harvey E. Indyk, Brendon D. Gill, David C. Woollard, Biotin content of paediatric formulae, early lactation milk and seasonal bovine milk powders by biosensor immunoassay, Int. Dairy J. 35 (1) (2014) 25–31.
[120] Harvey E. Indyk, Brendon D. Gill, David C. Woollard, An optical biosensor-based immunoassay for the determination of bovine serum albumin in milk and milk products, Int. Dairy J. 47 (2015) 72–78.
[121] Lan-hua Liu, Xiao-hong Zhou, Xu. Wei-qi, Bao-dong Song, Han-chang Shi, Highly sensitive detection of sulfadimidine in water and dairy products by means of an evanescent wave optical biosensor, RSC Advances 4 (104) (2014) 60227–60233.
[122] Rajul Patkar, Mamta Ashwin, Madhuri Vinchurkar, Andrea Adami, Flavio Giacomozzi, Leandro Lorcnzclli, M Shoiaei Baghini, and V Ramgopal Rao. Microcantilever based dual mode optical biosensor for agricultural pathogen detection. In 2018 IEEE SENSORS, pages 1–3. IEEE, 2018.
[123] Zaineb Gharsallah, Monia Najjar, Bhuvneshwer Suthar, Vijay Janyani, High sensitivity and ultra-compact optical biosensor for detection of urea concentration, Opt. Quant. Electron. 50 (6) (2018) 249.
[124] Guixian Zhu, Lin Cheng, Ruogu Qi, Mizhen Zhang, Jiahao Zhao, Lianqing Zhu, Mingli Dong, A metal-organic zeolitic framework with immobilized urease for use in a tapered optical fiber urea biosensor, Microchim. Acta 187 (1) (2020) 72.
[125] Se´amus Higson, Biosensors for medical applications, Elsevier, 2012.
[126] Yi Lu, Jian Gao, Donna D Zhang, Vincent Gau, Joseph C Liao, and Pak Kin Wong. Single cell antimicrobial susceptibility testing by confined microchannels and electrokinetic loading. Analytical chemistry, 85(8):3971–3976, 2013.
[127] Julia M. Hillger, Wai-Ling Lieuw, Laura H. Heitman, Adriaan P. IJzerman, Label-free technology and patient cells: from early drug development to precision medicine, Drug Discovery Today 22 (12) (2017) 1808–1815.
[128] R. Correia, S. James, S.W. Lee, S.P. Morgan, S. Korposh, Biomedical application of optical fibre sensors, J. Opt. 20 (7) (2018) 073003.
[129] Sumin Bian, Lu. Jiadi, Filip Delport, Se´verine Vermeire, Dragana Spasic, Jeroen Lammertyn, Ann Gils, Development and validation of an optical biosensor for rapid monitoring of adalimumab in serum of patients with crohn’s disease, Drug Test. Anal. 10 (3) (2018) 592–596.
[130] Mahmoud Amouzadeh Tabrizi, Josep Ferre´-Borrull, Lluis F. Marsal, An optical biosensor for the determination of cathepsin b as a cancer-associated enzyme using nanoporous anodic alumina modified with human serum albumin-thionine, Microchim. Acta 187 (4) (2020) 1–9.
[131] Simranjeet Singh, Vijay Kumar, Daljeet Singh Dhanjal, Shivika Datta, Ram Prasad, and Joginder Singh. Biological biosensors for monitoring and diagnosis. In Microbial Biotechnology: Basic Research and Applications, pages 317– 335. Springer, 2020.
[132] Oliver Bleher, Aline Schindler, Meng-Xin Yin, Andrew B. Holmes, Peter B Luppa, Gu¨nter Gauglitz, and Gu¨nther Proll. Development of a new parallelized, optical biosensor platform for label-free detection of autoimmunity-related antibodies, Analytical and bioanalytical chemistry 406 (14) (2014) 3305– 3314.
[133] Veli V. Uslu, Guido Grossmann, The biosensor toolbox for plant developmental biology, Current opinion in plant biology 29 (2016) 138–147.
[134] Mary Lou Tortorello, Steven M Gendel, Food Microbiology and Analytical Methods: New Technologies, CRC Press, 1997.
[135] Fatemeh Hakimian, Hedayatollah Ghourchian, Azam sadat Hashemi, Mohammad Reza Arastoo, Mohammad Behnam Rad, Ultrasensitive optical biosensor for detection of mirna 155 using positively charged au nanoparticles, Scientific reports 8 (1) (2018) 1–9.
[136] Jinchuan Liu, Xiaohong Zhou, Hanchang Shi, An optical biosensor-based quantification of the microcystin synthetase a gene: early warning of toxic cyanobacterial blooming, Analytical chemistry 90 (3) (2018) 2362–2368.
[137] H. Ahmadi, H. Heidarzadeh, A. Taghipour, A. Rostami, H. Baghban, M. Dolatyari, G. Rostami, Evaluation of single virus detection through optical biosensor based on microsphere resonator, Optik 125 (14) (2014) 3599–3602.
[138] Kai Song, Xianggui Kong, Xiaomin Liu, Youlin Zhang, Qinghui Zeng, Tu. Langping, Zhan Shi, Hong Zhang, Aptamer optical biosensor without bio-breakage using upconversion nanoparticles as donors, Chem. Commun. 48 (8) (2012) 1156–1158.
[139] Elena Kardash, Jan Bandemer, Erez Raz, Imaging protein activity in live embryos using fluorescence resonance energy transfer biosensors, Nature protocols 6 (12) (2011) 1835.
[140] Malcolm S. Purdey, Avishkar Saini, Hanna J. McLennan, Benjamin J. Pullen, Erik P. Schartner, Melanie L. Sutton McDowall, Jeremy G. Thompson, Tanya M. Monro, Stephen J. Nicholls, Andrew D. Abell, Biosensors for detecting stress in developing embryos, SPIE BioPhotonics Australasia, volume 10013, International Society for Optics and Photonics, 2016, p. 100130B.
[141] Le´onid M. Irenge, Jean-Luc Gala, Rapid detection methods for bacillus anthracis in environmental samples: a review, Applied microbiology and biotechnology 93 (4) (2012) 1411– 1422.
[142] N. Ghosh, G. Gupta, M. Boopathi, V. Pal, A.K. Singh, N. Gopalan, A.K. Goel, Surface plasmon resonance biosensor for detection of bacillus anthracis, the causative agent of anthrax from soil samples targeting protective antigen, Indian journal of microbiology 53 (1) (2013) 48–55.
[143] Nickolaj F. Starodub, Yulia A. Ogorodniichuk, Yulia A. Sitnik, Nelja F. Slishik, Biosensors for the control of some toxins, viral and microbial infections to prevent actions of bioterrorists, in: Portable Chemical Sensors, Springer, 2012, pp. 95–117.
[144] Alexei Nabok, Comparative studies on optical biosensors for detection of bio-toxins, in: Biosensors for Security and Bioterrorism Applications, Springer, 2016, pp. 491–508.
[145] Qian Zhang, Diming Zhang, Lu. Yanli, Yao Yao, Shuang Li, Qingjun Liu, Graphene oxide-based optical biosensor functionalized with peptides for explosive detection, Biosens. Bioelectron. 68 (2015) 494–499.
[146] Eva Ehrentreich-Fo¨rster, Dagmar Orgel, Andrea KrauseGriep, Birgit Cech, Volker A Erdmann, Frank Bier, F.W. Scheller, Martina Rimmele, Biosensor-based on-site explosives detection using aptamers as recognition elements, Analytical and bioanalytical chemistry 391 (5) (2008) 1793–1800.
[147] Jin Wang, Near infrared optical biosensor based on peptide functionalized single-walled carbon nanotubes hybrids for 2, 4, 6-trinitrotoluene (tnt) explosive detection, Analytical biochemistry 550 (2018) 49–53.
[148] Feng Long, Anna Zhu, Hanchang Shi, Recent advances in optical biosensors for environmental monitoring and early warning, Sensors 13 (10) (2013) 13928–13948.
[149] Shokoufeh Hassani, Saeideh Momtaz, Faezeh Vakhshiteh, Armin Salek Maghsoudi, Mohammad Reza Ganjali, Parviz Norouzi, Mohammad Abdollahi, Biosensors and their applications in detection of organophosphorus pesticides in the environment, Archives of toxicology 91 (1) (2017) 109–130.
[150] Sˇa´rka Nevolova´, Marke´ta Za´mecˇnı´kova´, T Rataj, Jirˇı´ Damborsky‘, Martina Trtilek, Zbyneˇk Prokop, et al. Fluorescence-based biosensor for monitoring of environmental pollutants: From concept to field application. 2016.
[151] Kirill A. Lukyanenko, Ivan A. Denisov, Vladimir V. Sorokin, Anton S. Yakimov, Elena N. Esimbekova, Peter I. Belobrov, Handheld enzymatic luminescent biosensor for rapid detection of heavy metals in water samples, Chemosensors 7(1):16 (2019).
[152] Mehmet Turemis, Silvia Silletti, Gianni Pezzotti, Josep Sanchı´s, Marinella Farre´, Maria Teresa Giardi, Optical biosensor based on the microalga-paramecium symbiosis for improved marine monitoring, Sensors and Actuators B: Chemical 270 (2018) 424–432.
[153] Hemanth Maddali, Catherine E. Miles, Joachim Kohn, Deirdre M. O’Carroll, Optical biosensors for virus detection: Prospects for sars-cov-2/covid-19, ChemBioChem 22 (7) (2021) 1176–1189.
[154] Zhenhua Chen, Zhigao Zhang, Xiangming Zhai, Yongyin Li, Li Lin, Hui Zhao, Lun Bian, Peng Li, Yu. Lei, Wu. Yingsong, et al, Rapid and sensitive detection of anti-sars-cov-2 igg, using lanthanide-doped nanoparticles-based lateral flow immunoassay, Analytical chemistry 92 (10) (2020) 7226–7231.
[155] K. Rajpoot, Recent advances and applications of biosensors in novel technology, Biosens. J 6 (2017) 1–12.
[156] Shengbo Sang, Yajun Wang, Qiliang Feng, Ye Wei, Jianlong Ji, Wendong Zhang, Progress of new label-free techniques for biosensors: a review, Critical reviews in biotechnology 36 (3) (2016) 465–481.
[157] Frances S Ligler, J. Justin Gooding, Lighting up biosensors: Now