An Ultra-broadband and Low Noise distributed Drain Mixer with Filtering Structure
Subject Areas : Majlesi Journal of Telecommunication DevicesMasoume Mahmoudi Meimand 1 * , Ahmad Hakimi 2
1 - Department of Electrical and Computer Engineering, Graduate University of Advance Technology, Kerman, Iran
2 - Department of Electrical Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
Keywords: en,
Abstract :
This paper presents a 6 to 64 GHz passive distributed drain mixer implemented by using a standard 0.13 um CMOS process. To improve the bandwidth, low conversion loss and low noise figure, filtering structures is utilized for wideband matching. Both Chebyshev and Butterworth filters are used instead of the classical constant-k sections of the conventional DA in order to form respectively the gate and drain transmission lines. This mixer consumes zero dc power and exhibits a conversion loss of 4.9-7.9 dB and noise figure (DSB) of 6.8-8.1 dB from 6 to 64 GHz.
[1] H. Y. Yang, J. H. Tsai, C. H. Wang, C. S. Lin, W. L. Lin, K. Y. Lin, T. W. HuangH, and Wang, “Design and analysis of a 0.8–77.5-GHz ultra-broadband distributed drain mixer using 0.13-um CMOS technology, ” IEEE Trans. Microw. Theory Tech, Vol. 57, No. 3, pp. 562–572, Mar. 2009.
[2] C.-R. Wu, H.-H. Hsieh, and L.-H. Lu, “An ultra-wideband distributed active mixer MMIC in 0.18-um CMOS technology, ” IEEE Trans. Microw. Theory Tech., Vol. 55, No. 4, pp. 625–632, Apr. 2007.
[3] N. Garg, L. B. Lok, I. D. Robertson, M. Chongcheawchamnan, and A. Worapishet, “1 to 20 GHz CMOS distributed mixer using asymmetric coplanar strip transmission lines, ” in Proc. Radio Freq. Integr. Circuits Symp., pp. 217–220, Jun. 2006.
[4] Y-Sh. Lin, Ch-L. Lu, and Y-H. Wang, “A 5 to 45 GHz Distributed Mixer With Cascoded Complementary Switching Pairs, ” IEEE Microw. Wireless Compon. Lett, Vol. 23, No. 9, pp. 495–497, Sep. 2013.
[5] Sh-H. Hung, K-W. Cheng, and Y-H. Wang, “An Ultra-Broadband Subharmonic Mixer With Distributed Amplifier Using 90-nm CMOS Technology, ” IEEE Trans. Microw. Theory Tech., Vol. 61, No. 10, pp. 3650–3657, Oct. 2013.
[6] F. Ellinger, “26.5–30-GHz resistive mixer in 90-nm VLSI SOI CMOS technology with high linearity for WLAN, ” IEEE Trans. Microw. Theory Tech., Vol. 53, No. 8, pp. 2559–2565, Aug. 2005.
[7] F. Ellinger, L. C. Rodoni, G. Sialm, C. Kromer, G. von Buren, M. L. Schmatz, C. Menolfi, T. Toifl, T. Morf, M. Kossel, and H. Jackel, “30–40-GHz drain-pumped passive-mixer MMIC fabricated on VLSI SOI CMOS technology, ” IEEE Trans. Microw. Theory Tech., Vol. 52, No. 5, pp. 1382–1391, May 2004.
[8] B. Nie, J. Zhou, and K. Chen, “Design and Analysis of an Ultra wide-Band Distributed Drain-Pumped Mixer Using 0.18um CMOS Technology, ” in Microw.& Elec, primeAsia, pp 29-32 , 2009.
[9] H. Y. Yang, J. H. Tsai, T. W. Huang, and H. Wang, “Analysis of a new 33–58-GHz double-balanced drain mixer in 90-nm CMOS technology, ” IEEE Tran. Microw. Theory Tech., Vol. 60, No. 4, pp. 1057–1068, Apr. 2012.
[10] Y. Zhu, and H. Wu, “Distributed Amplifiers with Non-Uniform Filtering Structures, ” IEEE Radio Freq. Integr. Circuits (RFIC) Symposium, pp. 367-370, Jun. 2006.