Improved Perovskite Solar Cell Performance Using Semitransparent CNT Layer
Subject Areas : Journal of Optoelectronical NanostructuresMansureh Roohollahi 1 , Mohammad Reza Shayesteh 2 * , Majid Pourahmadi 3
1 - Department of Electrical Engineering, Yazd Branch, Islamic Azad University, Yazd,
Iran.
2 - Department of Electrical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran.
3 - Department of Electrical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran.
Keywords: Numerical Simulation, Efficiency, Charge Collector,
Abstract :
In this paper, the effect of using semi-transparent Carbon
nanotube layer (CNT) on the efficiency of perovskite
solar cell (PSC) is investigated. One of the most
important process in PCS is charge collecting. In this
regard, Carbon nanotubes have the ability to act as charge
collector layer in solar cell. Carbon nanotubes, due to
suitable optical and electrical properties such as
transparency, high mobility and stability have been
widely used in solar cell structures. In the proposed
structure, we use semi-transparent CNT layer as charge
collector on top of PSC. This layer with low resistance
path for transport charge carriers has increased short
circuit current and other performance parameters of solar
cell. The proposed device structure
ITO/CNT/TiO2/CH3NH3PbI3/Spiro-OMeTAD is
simulated with Silvaco TCAD. The simulation results
show that the efficiency of the perovskite solar cell with
semi-transparent CNT layer is reached 23.59% which is
3.15% higher than simple perovskite solar cell structure
under AM1.5G.
[2] G. Xing, N. Mathews, S. Sun, S. Lim, Y. Lam, M. Grätzel,S. Mhaisalkar, T. Sum, Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science. [Online]. 342(6156) (2013, Oct.) 344-347. Available:DOI: 10.1126/science.1243167.
[3] S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. Xing, T. Sum, Y. Lam, The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy & Environmental Science. [Online]. 7(1) (2014) 399-407. Available:
[4] S. D. Stranks, G. Eperon, G. Grancini, C. Menelaou, M. Alcocer, T.Leijtens, L.Herz, A. Petrozza, H. Snaith, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science. [Online]. 342 (6156) (2013, Oct.) 341-344. Available:
[5] M. A. Green, A. Ho-Baillie, H. J. Snaith, The emergence of perovskite solar cells. Nature photonics. [Online]. 8(7) (2014, June.) 506-514. Available: https://doi.org/10.1038/nphoton.2014.134.
[6] SR. Hosseini, M. Bahramgour, N. Delibas, A. Niaei, A simulation study around investigating the effect of polymers on the structure and performance of a perovskite solar cell. Journal of Optoelectronical Nanostructures. [Online]. 7(2) (2022, June.) 37-50. Available: https://dx.doi.org/10.30495/jopn.2022.29720.1252
[7] S. Rafiee Rafat, Z. Ahangari, M. M. Ahadian, Performance Investigation of a Perovskite Solar Cell with TiO2 and One Dimensional ZnO Nanorods as Electron Transport Layers. Journal of Optoelectronical Nanostructures. [Online].6(2) (2021, May.) 75-90. Available: https://dx.doi.org/10.30495/jopn.2021.28208.1224
[8] K.Pourchitsaz, MR.Shayesteh, Self-heating effect modeling of a carbon nanotube-based fieldeffect transistor (CNTFET), Journal of Optoelectronical Nanostructures. [Online]. 4(1) (2019, winter.) 51-66. Available:https://dorl.net/dor/20.1001.1.24237361.2019.4.1.4.2
[9] H.hashemi madani, MR.Shayesteh, MR.Moslemi, A Carbon Nanotube (CNT)-based SiGe Thin Film Solar Cell Structure. Journal of Optoelectronical Nanostructures. [Online]. 6(1) (2021, winter.) 71-86. Available:https://dx.doi.org/10.30495/jopn.2021.4541
[10] S. N jafari, A.Ghadimi, s. rouhi , Strained Carbon Nanotube (SCNT) Thin Layer Effect on GaAs Solar Cells Efficiency. Journal of Optoelectronical Nanostructures. [Online]. 5(4) (2020, Autumn.) 87-110. Available:https://dorl.net/dor/20.1001.1.24237361.2020.5.4.6.7
[11] Z. Li, S. Kulkarni, P. P.Boix, E. Shi, A. Cao, K. Fu, S.K. Batabyal , J. Zhang ,Q.Xiong, L. H. Wong, N. Mathews, S. G.Mhaisalkar, Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells. ACS nano. [Online]. 8(7) (2014, June.) 6797-6804. Available:https://doi.org/10.1021/nn501096h.
[12] I. Jeon, J. Yoon, U. Kim, C. Lee, R. Xiang, A. Shawky, X. Jun, B. Junseop, L.Hyuck, C.Mansoo, M.Shigeo, Y. Matsuo, High‐performance solution‐processed double‐walled carbon nanotube transparent electrode for perovskite solar cells. Advanced Energy Materials. [Online]. 9 (27) (2019, June.) 1901204. Available: https://doi.org/10.1002/aenm.201901204.
[13] S. N. Habisreutinger, T. Leijtens, G. E. Eperon, S. D. Stranks, R. J. Nicholas, H. J. Snaith, Enhanced hole extraction in perovskite solar cells through carbon nanotubes. physical chemistry letters. [Online]. 5(23) (2014, Nov.) 4207-4212. Available: https://doi.org/10.1021/jz5021795.
[14] Y. Zhang, L. Tan, Q. Fu, L. Chen, T. Ji, X. Hu, Y. Chen, Enhancing the grain size of organic halide perovskites by sulfonate-carbon nanotube incorporation in high performance perovskite solar cells. Chemical Communications. [Online]. 52(33) (2016, Mar.) 5674-5677. Available: https://doi.org/10.1039/C6CC00268D.
[15] K. Aitola, K. Domanski,J. P. Correa‐Baena, K. Sveinbjörnsson, M. Saliba, A. Abate, M. Grätzel, E. Kauppinen, E. M. J. Johansson, W. Tress, A. Hagfeldt, G. Boschloo, High temperature‐stable perovskite solar cell based on low‐cost carbon nanotube hole contact. Advanced Materials. [Online]. 29(17) (2017, Feb.) 1606398. Available: https://doi.org/10.1002/adma.201606398.
[16] Severin N. Habisreutinger and Jeffrey L. Blackburn, Carbon nanotubes in high-performanceperovskite photovoltaics and other emerging optoelectronic applications. Journal of Applied Physics. [Online]. 129, 010903 (2021, January.) Available: https://doi.org/10.1063/5.0035864.
[17] A. Hima, N. Lakhdar, B. Benhaoua, A. Saadoune, I. Kemerchou, F. Rogti, An optimized perovskite solar cell designs for high conversion efficiency. Superlattices and Microstructures. [Online]. 129 (2019, May.) 240-246. Available: https://doi.org/10.1016/j.spmi.2019.04.007.
[18] M. Hadadian , J. H. Smått, J. P. Correa-Baena, The role of carbon-based materials in enhancing the stability of perovskite solar cells. Energy & Environmental Science. [Online]. 13(5) (2020) 1377-1407. Available: DOI: 10.1039/C9EE04030G.
[19] G. Z. Xiao, Y . Tao, J. Lu, Z. Zhang, Highly transparent and conductive carbon nanotube coatings deposited on flexible polymer substrate by solution method. Presented at INEC. [Online]. (2010) 208-209. Available: https://doi.org/10.1109/INEC.2010.5424634.
[20] G. A. Buxton, N. Clarke, Computer simulation of polymer solar cells, Modelling and simulation in materials science and engineering. IOPscience. [Online]. 15(2) (2006, Dec.) 13-26. Available: https://doi.org/10.1088/0965-0393/15/2/002.
[21] A. L. Fahrenbruch, R. H. Bube, Fundamentals of solar cells (photovoltaic solar energy conversion). Solar Energy Engineering. [Online]. 106 (1984, Nov.) 497-498. Available: https://doi.org/10.1115/1.3267632.
[22] T. Goliber, J. H. Perlstein, Analysis of photogeneration in a doped polymer system in terms of a kinetic model for electric‐field‐assisted dissociation of charge‐transfer states. chemical physics. [Online]. 80(9) (1984) 4162-4167. Available: https://doi.org/10.1063/1.447244.
[23] C. L. Braun, Electric field assisted dissociation of charge transfer states as a mechanism of photocarrier production. chemical physics. [Online]. 80 (9) (1984) 4157-4161. Available: https://doi.org/10.1063/1.447243.
[24] L. J. Koster, E. C. P. Smits, V. D. Mihailetchi, P. W. Blom, Device model for the operation of polymer/fullerene bulk heterojunction solar cells. Physical Review B. [Online]. 72(8) (2005, Aug.) 085205. Available: https://doi.org/10.1103/PhysRevB.72.085205.
[25] K. J. Singh, T. J. Singh, D. Chettri, S. K. Sarkar, A thin layer of Carbon Nano Tube (CNT) as semi-transparent charge collector that improve the performance of the GaAs Solar Cell. Optik. [Online]. 135(2017, April.). 256-270. Available: https://doi.org/10.1016/j.ijleo.2017.01.090.
[26] N. Zhou, A. Facchetti, Charge transport and recombination in organic solar cells (oscs), in Organic and Hybrid Solar Cells. Switzerland Springer, Cham. [Online]. (2014) 19-52. Available: https://doi.org/10.1007/978-3-319-10855-1_2.
[27] A. R. Garfrerick, Modeling heterogeneous carbon nanotube networks for photovoltaic applications using silvaco atlas software, Thesis, Naval
Postgraduate School, California. [Online]. (2012, June.) Available: https://calhoun.nps.edu/handle/10945/7345.
[28] L. J. Phillips , A. M. Rashed, R. E. Treharne, J. Kay, P. Yates, I. Z. Mitrovic, A. Weerakkody S. Hall, K. Durose, Dispersion relation data for methylammonium lead triiodide perovskite deposited on a (100) silicon wafer using a two-step vapour-phase reaction process. Data in brief. [Online]. (5) (2015, Dec.) 926-928. Available: https://doi.org/10.1016/j.dib.2015.10.026
[29] M. Filipič, P. Löper, B. Niesen, S. De Wolf, J. Krč,. C. Ballif, M. Topič, CH3NH3PbI3 perovskite/silicon tandem solar cells: characterization based optical simulations. Optics express. [Online]. 23(7) (2015) A263-A278. Available: https://doi.org/10.1364/OE.23.00A263.