A Novel Design of a Multi-layer 2:4 Decoder using Quantum- Dot Cellular Automata
Subject Areas : Journal of Optoelectronical NanostructuresReza Pourtajabadi 1 , Maryam Nayeri 2
1 - Department of Electrical Engineering, Yazd Branch, Islamic Azad University,
Yazd, Iran.
2 - Department of Electrical Engineering, Yazd Branch, Islamic Azad University,
Yazd, Iran.
Keywords: Quantum-Dot Cellular Automata, Nano Electronics, Majority Voter Gate, Active High Decoder,
Abstract :
The quantum-dot cellular automata (QCA) is considered as an alternative to
complementary metal oxide semiconductor (CMOS) technology based on physical
phenomena like Coulomb interaction to overcome the physical limitations of this
technology. The decoder is one of the important components in digital circuits, which
can be used in more comprehensive circuits such as full adders and memories. This
paper proposes the 2:4 decoder using multilayer QCA technology. The multilayer
decoder provides requirements of high-density devices with good computing power.
The proposed 2:4 active high decoder reduces the clock phases to three, making the
circuit faster than previous ones. Moreover, the number of cells and occupied space are
significantly reduced, thus reducing power consumption. Multi-layer architecture has
more reliability than coplanar architecture and allows for the easy layout change. The
structure was simulated using QCA Designer software, and the simplified expressions
and standard functions have been presented. The simulation results can be useful for
using them in logic circuits.
[1] S. S. Ramachandran, and K. J. Kumar, Design of a 1-bit half and full subtractor using a quantum-dot cellular automata (QCA). In 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI) (2017) 2324-2327.
Preparation of Papers for Journal of Optoelectronical Nanostructures * 47
[2] J. Timler, and C. S. Lent, Power gain and dissipation in quantum-dot cellular automata. Journal of applied physics, 91(2) (Jan. 2002), 823-831.
[3] J. I. Reshi, and M. T. Banday, Efficient design of nano scale adder and subtractor circuits using quantum dot cellular automata. 3rd International Conference on Electrical, Electronics, Engineering Trends, Communication, Optimization and Sciences (EEECOS 2016) (2016).
[4] A. N. Bahar, S. Waheed, N. Hossain, and M. Asaduzzaman, 2017. A novel 3-input XOR function implementation in quantum dot-cellular automata with energy dissipation analysis. Alexandria Engineering Journal. Elsevier (2017, Feb). Available:
https://www.sciencedirect.com/science/article/pii/S111001681730025X.
[5] M. Nayeri, P. Keshavarzian; M. Nayeri, A Novel Design of Penternary Inverter Gate Based on Carbon Nano Tube. Journal of Optoelectronical Nanostructures, 3, 1, 2018, 15-26.
[6] C. S. Lent, P. D. Tougaw, W. Porod, and G. H. Bernstein. Quantum cellular automata. Nanotechnology 4(1) (Jan. 1993) 4-9.
[7] B. Sen, M. Dalui, and B. K. Sikdar. Introducing universal QCA logic gate for synthesizing symmetric functions with minimum wire-crossings. Proceedings of the International Conference and Workshop on Emerging Trends in Technology. ACM, (Feb. 2010) 828-833.
[8] G. Schulhof, K. Walus, and G. A. Jullien. Simulation of random cell displacements in QCA. ACM Journal on Emerging Technologies in Computing Systems (JETC) 3(1) (Apr. 2007) 1-12.
[9] K. Walus, G. Schulhof, and G. A. Jullien. High level exploration of quantum-dot cellular automata (QCA). Signals, Systems and Computers, 2004. Conference Record of the Thirty-Eighth Asilomar Conference on. Vol. 1. IEEE, (2004) 30-33.
[10] K. Walus, and G. A. Jullien. Design tools for an emerging SoC technology: Quantum-dot cellular automata. Proceedings of the IEEE 94(6) (Jun. 2006) 1225-1244.
[11] M. Goswami, H. Tibrewal, and S. Mazumdar, Efficient Realization of Digital Logic Circuit using QCA Multiplexer. Paper presented at the 2nd International Conference on Business and Information Management (ICBIM) (2014) 165-170.
[12] C. S. Lent, P. D. Tougaw, and W. Porod. A bistable quantum cell for cellular automata. International Workshop Computational Electronics. (1992) 163-166.
[13] T. N. Sasamal, A. K. Singh, and U. Ghanekar, Design of QCA-Based D Flip Flop and Memory Cell Using Rotated Majority Gate. In Smart Innovations in Communication and Computational Sciences. Springer (2018, Jul) 233-247. Available:
https://link.springer.com/chapter/10.1007/978-981-10-8971-8_22.
[14] B. Sen, M. Goswami, S. Some, and K. Biplab, Design of Sequential Circuits in Multilayer QCA Structure. International Symposium on Electronic System Design. (2013) 21-25.
[15] W. Liu, E. E. Swartzlander Jr, and M. O’Neill. Design of semiconductor QCA systems. Artech House, Boston London, 2013, 11-20.
[16] C. Labrado, and H. Thapliyal, Design of adder and subtractor circuits in majority logic-based field-coupled QCA nanocomputing. Electronics letters, 52(6) (Mar. 2016) 464-466.
[17] R. Akeela, and M. D. Wagh. A five-input majority gate in quantum-dot cellular automata. NSTI Nanotech. Vol. 2 (Jan. 2011) 978-981.
[18] B. Sen, A. Nag, A. De, and B. K. Sikdar. Multilayer design of QCA multiplexer. India Conference (INDICON), 2013 Annual IEEE. IEEE, (2013) 1-6.
[19] Z. D. Patitz, N. Park, M. Choi, and F. J. Meyer, QCA-based majority gate design under radius of effect-induced faults.20th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems. IEEE, (2005).
[20] K. Walus, T. J. Dysart, G. A. Jullien, and R. A. Budiman. QCA Designer: A rapid design and simulation tool for quantum-dot cellular automata. IEEE Transactions on Nanotechnology 3(1) (Mar. 2004) 26-31.
[21] H. Balijepalli, and M. Niamat. Design of a nanoscale quantum-dot cellular automata configurable logic block for FPGAs. Circuits and Systems (MWSCAS), 2012 IEEE 55th International Midwest Symposium on. IEEE, (2012) 622-625.
[22] P. P. Chougule, B. Sen, and T. D. Dongale. Realization of processing In-memory computing architecture using quantum dot cellular automata. Microprocessors and Microsystems, 52, (Jul. 2017) 49-58.
[23] F. Mehdizadeh, H. Alipour-Banaei, S. Serajmohammadi. All optical 1 to 2 decoder based on photonic crystal ring resonator. Journal of Optoelectronical Nanostructures, 2(2), (Spring 2017) 1-10.
[24] T. V. N. Rao, and S. Pathania. The Next Generation Computing Brainwave-Quantum Computing. International Journal of Advanced Research in Computer Science 1(4). (Nov. 2010) 19-30.
[25] K. Makanda, and J. C. Jeon. Combinational Circuit Design Based on Quantum-Dot Cellular Automata. International Journal of Control and Automation 7(6). (Jun. 2014). 369-378.