3D-QSAR and docking analysis on a series of multi-cyclin-dependent kinase inhibitors using CoMFA, and CoMSIA
Subject Areas : Journal of the Iranian Chemical ResearchJahan B. Ghasemi 1 , Mahnaz Ayati 2 , Somayeh Pirhadi 3 , Reihaneh Safavi-Sohi 4
1 - Chemistry Department, Faculty of Sciences, K. N. Toosi University of Technology, Tehran, Iran
2 - Chemistry Department, Faculty of Sciences, K. N. Toosi University of Technology, Tehran, Iran
3 - Chemistry Department, Faculty of Sciences, K. N. Toosi University of Technology, Tehran, Iran
4 - Chemistry Department, Faculty of Sciences, K. N. Toosi University of Technology, Tehran, Iran
Keywords: CoMFA, CoMFA region focusing, CoMSIA, CDOCKER, multi-cyclin-dependent kinase Inhibitors,
Abstract :
A series of 42 Pyrazolo[4,3-h]quinazoline-3-carboxamides as multi-cyclin-dependent kinaseinhibitors regarded as promising antitumor agents to complement the existing therapies, wassubjected to a three-dimensional quantitative activity relationship (3D QSAR). Different QSARmethods, comparative molecular field analysis (CoMFA), CoMFA region focusing, andcomparative molecular similarity indices analysis (CoMSIA), were compared. All these QSARbasedmodels had good statistical parameters and yielded q2 values of 0.717, 0.806, and 0.557,respectively. The CoMFA region focusing model provided the highest q2 and r2 values, whichimplied the significance of correlation of steric and electrostatic fields with biological activities.The quality of CoMSIA was slightly lower than that of CoMFA region focusing in terms of q2and r2 values. The results of 3D contour maps can be useful for the future development of CDKsinhibitors. The results of 3D QSAR models are in agreement with docking results, and thestatistical parameters of the models explain that the data are well fitted and have high predictiveability.
[1] http:\\www.who.int/mediacentre/events/annua/world_cancer_day/en.
[2] D.O. Morgan, Nature, 374 (1995) 131-134.
[3] D. Morgan, Annu. Rev. Cell. Dev. Biol. 13 (1997) 261-291.
[4] Y.T. Chang, N.S. Gray, G.R. Rosania, D.P. Sutherlin, S. Kwon, T.C. Norman, R. Sarohia, M. Leost,
L. Meijer, P.G. Schultz, Chem. Biol. 6 (1999) 361-375.
[5] W.F. De Azevedo, S. Leclerc, L. Meijer, L. Havlicek, M. Strnad, S.H. Kim, Eur. J. Biochem. 243
(1997) 518-526.
[6] P. Imbach, H.G. Capraro, P. Furet, H. Mett, T. Meyer, J. Zimmermann, Bioorg. Med. Chem. Lett. 9
(1999) 91-96.
[7] R. Hoessel, S. Leclerc, J. Endicott, M. Noble, A. Lawrie, P. Tunnah, M. Leost, E. Damiens, D. Marie,
D. Marko, E. Niederberger, W. Tang, G. Eisenbrand, L. Meijer, Nat. Cell. Biol. 1 (1999) 60-67.
[8] C. Schultz, A. Link, M. Leost, D.W. Zaharevitz , R. Gussio, E.A. Sausville, L. Meijer, C. Kunick, J.
Med. Chem. 42 (1999) 2909-2919.
[9] L.L. Kent, N.E. Hull Campbell, T. Lau, J.C. Wu, S.A. Thompson, M. Nori, Biochem. Biophys. Res.
Commun. 260 (1999) 768-774.
[10] G. Manning, D.B. Whyte, R. Martinez, T. Hunter, S. Sudarsanam, Science 298 (2002) 1912-1934.
J.B. Ghasemi & et al. / J. Iran. Chem. Res. 4 (2011) 235-249
249
[11] D.H.L. De Bondt, J. Rosenblatt, J. Jancarik, H.D. Jones, D.O. Morgan, S.H. Kim, Nature 363 (1993)
595-602.
[12] G. Traquandi, M. Ciomei , D. Ballinari, E. Casale, N. Colombo , V. Croci, F. Fiorentini, A. Isacchi,
A. Longo, C. Mercurio, A. Panzeri, W. Pastori, P. Pevarello, D. Volpi, P. Roussel, A. Vulpetti, M.
Gabriella Brasca, J, Med, Chem, 53 (2010) 2171-2187.
[13] R. Garg, S.P. Gupta, H. Gao, M.S. Babu, A.K. Debnath, C. Hansch, Chem. Rev. 99 (1999) 3525-
3602.
[14] R.D. Cramer, D.E. Patterson, J.D. Bunce, J. Am. Chem. Soc. 110 (1989) 5959-5967.
[15] G. Klebe, U. Abraham, T. Mietzner, J. Med. Chem. 37 (1994) 4130-4146.
[16] A. Streitwieser, Molecular Orbital Theory for Organic Chemists, Wiley, New York,1961.
[17] G. Folkers, A. Merz, D. Rognan, 3D-QSAR in Drug Design in: H. Kubinyi (ed) Theory, Methods
and Applications. The Netherlands, p. 583. ESCOM, Leiden, 1993.
[18] V.N. Viswanadhan, A.K. Ghose, G.R. Revankar, R.K. Robins, J. Chem. Inf. Comput. Sci. 29 (1989)
163-172.
[19] S. Kamath, J.K. Buolamwini, Med. Chem. 46 (2003) 4657-4668.
[20] M. Bohm, J. Sturzebecher, G. Klebe, J. Med. Chem. 42 (1999) 458-477.
[21] F.A. Momany, R. Rone, J. Comput. Chem. 13 (1992) 888-900.
[22] Discovery Studio. Accelrys Software Inc, San Diego, CA, 2009.
[23] W.U. Guosheng, D.H. Robertson, III C.L. Brooks, M. Vieth, J. comput. chem. 24 (2003) 1549-1562.
[24] R.D. Cramer, J.D. Bunce, D. E. Patterson, Quant. Struct. Act. Relat. 7 (1988) 18-25.
[25] P. Geladi, J. Chemometrics, 2 (1988) 231-246.
[26] A. Golbraikh, A. Tropsha, J. Mol. Graph. Model. 20 (2002) 269-276.