Cu(II) and Zn(II) complexes with unsymmetrical tetradentate Schiff base ligands: Synthesis, spectral characterization, antimicrobial assay and DNA binding property
Subject Areas : Journal of the Iranian Chemical ResearchNatarajan Raman 1 , Rajkumar Mahalakshmi 2 , Abraham Selvan 3 , Muthusamy Selvaganapathy 4
1 - Research Department of Chemistry, VHNSN College, Virudhunagar-626 001, India
2 - Research Department of Chemistry, VHNSN College, Virudhunagar-626 001, India
3 - Department of Chemistry, Veltech Hightech, Engineering College, Avadi, India
4 - Research Department of Chemistry, VHNSN College, Virudhunagar-626 001, India
Keywords: Cyclic voltammetry, DNA binding, Schiff base, Copper complexes, Viscometry,
Abstract :
The reaction of copper(II) chloride and zinc(II) chloride with N-(2-methylphenyl)-3-(1'-salicylaldehydene-2'-imine-ethane)-butanamide(H2L2a) or (MPSB), N-(2-methylphenyl)-3-(1'-(3'-methoxysalicylaldehydene-2'-imine-ethane)-butanamide (H2L2b) or (MPMSB) and N-(2-methylphenyl)-3-(1'-(2'-hydroxyacetylene-2'-imine-ethane)-butanamide (H2L2c) (MPHB) leads to the formation of a series of new complexes and theyhave been characterized by the spectral and analytical techniques. For the complexes [CuL2a-c] and [ZnL2ac],the central metal ion is coordinated to two azomethine nitrogen atoms and one phenolic oxygen atom ofthe aromatic aldehydes as well as 2-hydroxyacetophenone and enolic oxygen atom of the 2'-methylacetoacetanilide. DNA binding studies reveal the stronger binding capability of the present copper(II)complexes, confirmed by the absorbance, cyclic voltammetry, differential pulse voltammogram andviscometric studies. Similarly, remaining complexes do the same in the ligand field with less bindingconstants. In addition, fungistatic and bacteriostatic activities of both ligands and complexes have beenevaluated. copper(II) complexes have shown the most significant activities.
[1] K. Krishnankutty, M.B. Ummathur, J. Indian Chem. Soc. 83 (2006) 883-887.
[2] W.Adam, R.T. Fell, V.R. Stegmann, C.R. Saha-Möller, J.Am.Chem. Soc. 120 (1998) 708-714.
[3] M. Tumer, D. Ekinci, F. Tumer, A. Bulut, Spectrochim. Acta Part A 67 (2007) 916-929.
[4] A.K. Patra, S. Roy, A.R. Chakravarty, Inorg. Chim. Acta 362 (2009) 1591-1599.
[5] A.I. Vogel A Text Book of Quantitative Inorganic Analysis, 3rd ed., ELBS, Longman, London, 1969.
[6] M.V. Angelusiu, S.F. Barbuceanu, C. Draghici, G.L. Almajan, Eur. J. Med. Chem. 45 (2010) 2055-2062.
[7] M. Patel, M. Chhasatia, P. Parmar, Eur. J. Med. Chem. 45 (2010) 439-446.
[8] C. Jayabalakrishnan, K. Natarajan, Transition Met. Chem. 27 (2002) 75-79.
[9] A.A. El-Asmy, A.Z. Al-Abdeen, W.M. Abo El-Maaty, M.M. Mostafa, Spectrochim. Acta Part A 75
(2010) 1516-1522.
[10] S.M.E. Khalil, H.S. Seleem, B.A. El-Shetary, M. Shebl, J. Coord. Chem. 55 (2002) 883-899.
[11] U.O. Ozdemir, F. Arslan, F. Hamurcu, Spectrochim. Acta Part A 75 (2010) 121-126.
[12] E. Tas, A. Kilic, M. Durgun, L. Küpecik, I. Yilmaz, S. Arslan, Spectrochim. Acta Part A 75 (2010) 811-
818.
[13] N. Padma Priya, S. Arunachalam, A. Manimaran, D. Muthupriya, C. Jayabalakrishnan, Spectrochim.
Acta Part A 72 (2009) 670-676.
[14] A. Kulkarni, S.A. Patil, P.S. Badami, Eur. J. Med. Chem. 44 (2009) 2904-2912.
[15] K.R. Surati, B.T. Thaker, Spectrochim. Acta Part A 75 (2010) 235-242.
[16] Z. Chen, Y. Wu, D. Gu, F. Gan, Spectrochim. Acta part A 68 (2007) 918-926.
[17] A. Mukhopadhyay, G. Padmaja, S. Pal, S. Pal, Inorg. Chem. Commun. 6 (2003) 381-386.
[18] A.A.A. Emara. Spectrochim. Acta, Part A, 77 (2010) 117-125.
[19] N. Raman A. Selvan, J.Coord.Chem., 64 (2011) 534-553.
[20] R.S. Drago, M.J. Desmond, B.R. Corden, K.A. Miller, J. Am. Chem. Soc. 105 (1983) 2287-2296.
[21] M.A. Neelakantan, F. Rusalraj, J. Dharmaraja, S. Johnsonraja, T. Jeyakumar, M. Sankaranarayana
Pillai, Spectrochim. Acta Part A 71 (2008) 1599-1609.
[22] M.V. Angelusiu, G.L. Almajan, T. Rosu, M. Negoiu, E.-R. Almajan, J. Roy, Eur. J. Med. Chem. 44
(2009) 3323-3329.
[23] P. Kamalakannan, D. Venkappayya, Russ. J. Coord. Chem. 28 (2002) 423-433.
[24] J. Muller, K. Felix, C. Maichle, E. Lengfelder, J. Strahle, U. Weser, Inorg. Chim. Acta 233 (1995) 11-
19.
[25] V.P. Daniel, B. Murukan, B. Sindhu Kumari, K. Mohanan, Spectrochim. Acta Part A 70 (2008) 403-
410.
[26] B.J. Hathaway, Structure and Bonding, Springer Verlag, Heidelberg, 1973.
[27] M.S. Sujamol, C.J. Athira, Y. Sindhu, K. Mohanan, Spectrochim. Acta Part A 75 (2010) 106-112.
[28] Z.H. Chohan, A. Scozzafava, C.T. Supuran, J. Enz. Inhib. Med. Chem. 17 (2002) 261-266.
[29] B. Murukan, K. Mohanan, J. Enzyme Inhib. Med. Chem. 22 (2007) 65-70.
[30] H. Chao, W.J. Mei,. Q.W. Huang,; L.N. Ji, J Inorg Biochem 92 (2002) 165-170.
[31] S. Anbu, M. Kandaswamy, Polyhedron 30 (2011) 123-131.
[32] A.M. Pyle, J.P. Rehmann, R. Meshoyrer, C.V. Kumar, N.J. Turro, J.K. Barton, J. Am.Chem. Soc. 111
(1989) 3053-3063.
[33] N. Raman, A. Selvan, J. Mol. Stru., 985 (2011) 173-178.
[34] M.T. Carter, M. Rodriguez, A.J. Bard, J. Am. Chem. Soc. 111 (1989) 8901-8911.
[35] S. Tabassum, S. Parveen, F. Arjmand, Acta Biomaterial 1 (2005) 677-689.
[36] G. Psomas, J. Inorg. Biochem. 102 (2008) 1798-1811.
[37] B.D. Wang, Z.Y. Yang, D.W. Zhang, Y. Wang, Spectrochim. Acta Part A 63 (2006) 213-219.