Anti-inflammatory and antimicrobial studies of biosensitive Knoevenagel condensate β-ketoanilide Schiff base and its Co(II), Ni(II), Cu(II) and Zn(II) complexes
Subject Areas : Journal of the Iranian Chemical ResearchNatarajan Raman 1 , Ramaraj Jeyamurugan 2 , Jeyasekaran Joseph 3
1 - Research Department of Chemistry, VHNSN College, Virudhunagar-626 001, India
2 - Research Department of Chemistry, VHNSN College, Virudhunagar-626 001, India
3 - Department of Pharmaceutical Chemistry, Manonmanium Sundaranar University, Tirunelveli-627 012,
India
Keywords: Antimicrobial Activity, Schiff base, Anti-inflammatory activity,
Abstract :
A new series of transition metal complexes of Co(II), Ni(II), Cu(II) and Zn(II), has beensynthesized from the Knoevenagel condensate Schiff base ligand(L) derived from β-ketoanilideand furfural with o-phenylenediamine and diethylmalonate. Structural features were determinedby spectral and analytical techniques. Square-planar geometry has been adopted by thecomplexes except cobalt complex which has an octahedral geometry. The synthesized ligand andits complexes were screened for their anti-inflammatory activity in male albino rats(Carrageenan-induced rat paw oedema model). Among these complexes, copper complex showssignificant anti-inflammatory activity. It exhibits significant dose dependent activity in acuteinflammation. The doses of 100 and 200 mg kg-1 bw produced 38.3 % and 42.8 % inhibitionrespectively after 3 h as compared with that of the standard drug (indomethacin) which showed48.5 % inhibition. The in vitro antimicrobial activity of the ligand and its complexes wasmonitored by disc diffusion method. It has been found that complexes have higher antimicrobialactivity than that of free ligand.
[1] S. Yamada, Coord. Chem. Rev. 192 (1999) 537-555.
[2] T. Jeewoth, M.G. Bhowon, H.L.K. Wah, Trans. Met. Chem. 24 (1999) 445-448.
[3] L. Ostrosky-Zeichner, J.H. Rex, P.G. Pappas, R.J. Hamill, R.A. Larsen, H.W. Horowitz, W.G.
Powderly, N. Hyslop, C.A. Kauffman, J. Cleary, J.E. Mangino, J. Lee, Antimicrobial Agents and
Chemotherapy 47 (2003) 3149-3154.
[4] J. Lv, T. Liu, S. Cai, X. Wang, L. Liu, Y. Wang, J. Inorg. Biochem. 100 (2006) 1888-1896.
[5] R. Del Campo, J.J. Criado, E. Garcia, M.R. Hermosa, A. Jimenez-Sanchez, J.L. Manzano, E. Monte,
E. Rodriguez-Fernandez, F. Sanz, J. Inorg. Biochem. 89 (2002) 74-82.
[6] S. Belaid, A. Landreau, S. Djebbar, O. Benali-Baitich, G. Bouet, J.P. Bouchara, J. Inorg. Biochem.
102 (2008) 63-69.
[7] R. Gust, I. Ott, D. Posselt, K. Sommer, J. Med. Chem. 47 (2004) 5837-5846.
[8] Bottcher, H. Elias, E.J. Jager, H. Langlelderova, M. Mazur, L. Muller, H. Paulus, P. Pelikan, M.
Rudolph, M. Valko, (1993). Inorg. Chem. 32 (1993) 4131-4138.
[9] R. Klement, F. Stock, H. Elias, H. Paulus, P. Pelikan, M. Valko, M. Mazur, (1999). Polyhedron 18
(1999) 3617-3628.
[10] L.L. Koh, J.O. Ranford, W.T. Robinson, J.O. Svensson, A.L.C. Tau, D. Wu, Inorg. Chem. 35
(1996) 6466-6650.
[11] S. Belaid, A. Landrean, S. Djebbar, O. Benali-Baitich, M. Khan, G. Bouet, Trans. Met. Chem. 33
(2008) 511-516.
[12] P.D. Bernardo, P.L. Zanonato, S. Tamburini, P. Tomasin, P.A. Vigato, Dalton Trans. 39 (2006)
4711-4721.
[13] D.D. Perrin, W.L.F. Armarego, D.R. Perrin, Purification of Laboratory Chemicals, Oxford:
Pergamon Press, 1980.
[14] R.J. Angelici, Synthesis and Techniques in Inorganic Chemistry, Philadelphia: W.B. Saunders
Company, 1969.
[15] L.C. Miller, M.L. Tainter, Proc. Exp. Biol. Med. 57 (1944) 261-264.
[16] C.A. Winter, E.A. Risley, G.W. Nuss, Proc. Exp. Biol. Med. 111 (1962) 544-547.
[17] M.J. Pelczar, E.C.S. Chan, N.R. Krieg, Microbiology (5th ed.). W.C.B. Mc GrawHill, New York
(1998).
[18] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds (3rd ed.).
Wiley Interscience, New York, 1977.
[19] A.B.P. Lever, Inorganic Electronic Spectroscopy (2nd ed.). New York: Elsevier, New York, 1968.
N. Raman et al. / J. Iran. Chem. Res. 3 (2010) 83-95
95
[20] L.N. Sharada, A. Syamal, Elements of Magnetochemistry (2nd ed.), East-West Press, New Delhi,
1992.
[21] A.L. Sharma, I.O. Singh, H.R. Singh, R.M. Kadam, M.K. Bhide, M.D. Sastry, Trans. Met. Chem.
26 (2001) 532-537.
[22] R.N. Patel, N. Singh, K.K. Shukla, U.K. Chauhan, J. Nicols–Gutierrez, A. Castineiras, Inorg. Chim.
Acta 357 (2004) 2469-2476.
[23] A.W. Addison, In Copper Coordination Chemistry: Biochemical, Inorganic, Perspectives, (K.D.
Karlin, J. Zubieta ed.), Adenine Press, New York, 1983.
[24] A.W. Addison, Inorg. Chim. Acta 162 (1989) 217-220.
[25] R.K. Ray, G.B. Kauffman, Inorg. Chim. Acta 173 (1990) 207-214.
[26] R. Seangprasertkji, T.L. Riechel, Inorg. Chem. 23 (1984) 991-994.
[27] M.C.B. de Oliveira, M. Scarpellini, A. Neves, H. Terenzi, A.J. Bortoluzzi, B. Szpoganics, A.
Greatti, A.S. Mangrich, E.M. de Souza, P.M. Fernandez, M.R. Soares, Inorg. Chem. 44 (2005) 921-
929.
[28] R. Vinegar, W. Schreiber, R. Hugo, J. Pharmacol. Exp. Therap. 166 (1969) 96-103.
[29] Y. Anjaneyulu, R.P. Rao, Synth. React. Inorg. Met.-Org. and Nano-Met. Chem. 16 (1986) 257-272.
[30] N. Dharmaraj, P. Viswanathamurthi, K. Natarajan, Trans. Met. Chem. 26 (2001) 105-109.