The Influence of Zinc Oxide Nanoparticles on Blood Markers in Domestic Pigeons (Columba livia)
Subject Areas :
Journal of Chemical Health Risks
Mehran Arabi
1
*
,
Hamid-Reza Naseri
2
1 - Department of Animal Sciences, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
2 - Department of Animal Sciences, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
Received: 2021-08-09
Accepted : 2021-11-27
Published : 2021-10-01
Keywords:
Oxidative stress,
Antioxidant capacity,
ZnO Nanoparticles,
Domestic pigeon,
Blood markers,
Abstract :
The analysis of blood provides a minimally invasive way to gain an insight into the health status of an organism. Organisms that have become closely associated to human housing are at greatest risk of being affected by anthropogenic pollutants. The purpose of this study was to determine the alterations in blood markers of domestic pigeon (Columba livia) after oral administration of zinc oxide nanoparticles (n-ZnO). The birds were acclimatized to standard conditions with a photoperiod of 12:12 hr at 20±2ºC for 14 days. Birds were randomly assigned to one control and three experimental groups (in triplicate). The experimental groups orally received 30, 50, and 75 mg kg-1 b.w. of n-ZnO (1 ml/bird, daily) through oral gavage for 7 and 14 consecutive days. The oxidative stress (OS) biomarkers namely LPO/MDA level and CAT activity in the blood plasma samples with the activity of LDH were increased in a concentration-dependent manner. Meanwhile, total antioxidant capacity (TAC) of blood plasma and blood δ-ALAD activity were found to be lowered. Collectively, n-ZnO could affect the blood markers of pigeons, where oxidative damages may be the potential mechanism underlying this intoxication.
References:
1. Nam D.H., Lee D.P. 2006. Monitoring for Pb and Cd pollution using feral pigeons in rural, urban, and industrial environments of Korea. Sci Total Environ. 357(1-3), 288-295.
Aziz B., Zubair M., Irshad N., Shafique Ahmad K., Mahmood M., Tahir M.M., Hussain Shah K., Shaheen A., 2021. Biomonitoring of Toxic Metals in Feathers of Birds from North‑Eastern Pakistan. Bull Environ Contam Toxicol. 106, 805-811.
Milaimi A.P., Selimi Q., Trebicka A., Milaimi A., 2016. Histological study of liver, kidney and testes of feral pigeon (Columba livia) living in courtyard of ferronickel smelter in Drenas town- Kosovo. Int J Ecosyst Ecol Sci. 6(3), 297-304.
Abass M., Selim S., Selim A.O., El-Shal A., Gouda Z.A. 2017. Effect of Orally Administered Zinc Oxide Nanoparticles on Albino Rat Thymus and Spleen. IUBMB Life 69(7), 528-539.
Yao Y., Zang Y., Qu J., Tang M., Zhang T. 2019. The toxicity of metallic nanoparticles on liver: the subcellular damages, mechanisms, and outcomes. Int J Nanomed. 14, 8787-8804.
6. Umrani R., Paknikar K.M., 2014. Zinc oxide nanoparticles show antidiabetic activity in streptozotocin-induced Types 1 and 2 diabetic rats. Nanomed. 9(1), 89-104.
Richardson J., 2006. Implications of toxic substances in clinical disorders. In: Clinical avian medicine, Harrison, G.J., Lightfoot, T., Eds., Palm Beach (FL): Spix Publishing. pp. 711- 719.
8. Rusz M., Del Favero G., El Abiead Y., Gerner C., Keppler B.K., Jakupec M.A., Koellensperger G., 2021. Morpho‐metabotyping the oxidative stress response. Sci Rep. 11, 15471.
Long T.C., Saleh N., Tilton R.D., Lowry G.V., Veronesi B., 2006. Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. Environ Sci Technol. 40(14), 4346-4352.
Singh S., Cheng S., Singh S. 2020. Oxidative stress‑mediated genotoxic effect of zinc oxide nanoparticles on Deinococcus radiodurans. 3Biotech. 10, 66.
Jiang Y., Zhang L., Wen D., Ding Y., 2016. Role of physical and chemical interactions in the antibacterial behavior of ZnO nanoparticles against E. coli. Mater Sci Eng C. 69, 1361-1366.
Mayeux R., 2004. Biomarkers: Potential Uses and Limitations. NeuroRx. 1(2), 182-188.
Sheldon L.D., Chin E., Gill S.A., Schmaltz G., Newman A., Soma K.K. 2008. Effects of blood collection on wild birds: an update. J Avian Biol. 39(4), 369-378.
Akbay A., Aydemir C., Demirtas S., Turan-Tuncer E., Canbolat O., Genç Y. 2001. Antioxidant Status, Lipid Peroxidation Products and Cystatin C as Potential Clinical Markers of Alzheimer’s Disease in Systemic Circulation. Turk J Med Sci. 31(4), 329-335.
Torabi Farsani A., Arabi M., Shadkhast M. 2021. Ecotoxicity of chlorpyrifos on earthworm Eisenia fetida (Savigny, 1826): Modifications in oxidative biomarkers. Comp Biochem Physiol Part C: Toxicol Pharmacol. 249, 109145.
16. Zhang T., Gao J., Jin Z.Y., Xu X.M., Chen H.Q., Protective effects of polysaccharides from Lilium lancifolium on streptozotocin-induced diabetic mice. Int J Biol Macromol. 65, 436-440.
Hussain S., Tabassum R., 2019. Effect of heavy metals (zinc and cadmium) on serum enzymes activities and relative weight of liver and kidneys of pigeon, Columba livia domestica. Int J Biol Biotech. 16(2), 513-520.
Ahmadi F., Ebrahimnezhad Y., Sis N.M., Ghalehkandi J.G., 2013. The effects of zinc oxide nanoparticles on performance, digestive organs and serum lipid concentrations in broiler chickens during starter period. Int J Biosci. 3(7), 23-29.
Esterbauer H., Cheeseman K.H. 1990. Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol. 186, 407-421.
Luck H., 1965. Catalase. In: Method of Enzymatic Analysis, Bergmeyer, H.U., Ed., Academic Press: New York and London. pp. 885-894.
Wooton I.D.P. 1964. In: micro-analysis in medical biochemistry, 4th ed., J.&A. Churchill Ltd., London, p. 114.
Berlin A., Schaller K.H., 1974. European standardized method for the determination of δ-aminolevulinic acid dehydratase activity in blood. Z Klin Chem Klin Biochem. 12(8), 389-390.
23. Bradford M.M., 1976. A rapid sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72 (1-2), 248-254.
Benzie I.F., Strain J.J., 1996. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Anal Biochem. 239(1), 70-76.
Manke A., Wang L., Rojanasakul Y., 2013. Mechanisms of Nanoparticle-Induced Oxidative Stress and Toxicity. BioMed Res Int. Volume 2013, Article ID 942916, 15 pages.
Halliwell B., Gutteridge J.M.C., 1984. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J. 219(1), 1-14.
Xia T., Kovochich M., Liong M., Mädler L., Gilbert B., Shi H., Yeh J.I., Zink J.I., Nel A.E., 2008. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano. 2(10), 2121-2134.
Gwozdzinski K.,Pieniazek A.,Gwozdzinski L., 2021. Reactive Oxygen Species and Their Involvement in Red Blood Cell Damage in Chronic Kidney Disease. Oxid Med Cell Longev. vol. 2021, Article ID 6639199, 19 pages.
Jaeschke H., Wang Y., Essani N.A., 1996. Reactive oxygen species activate the transcription factor NF-kB in the liver by induction of lipid peroxidation. Hepatology. 24, 238A.
Goyal M.M., Basak A., 2010. Human catalase: Looking for complete identity. Protein Cell. 1, 888-897.
El-Bahr S.M., Shousha S., Albokhadaim I., Shehab A., Khattab W., Ahmed-Farid O., El-Garhy O., Abdelgawad A., El-Naggar M., Moustafa M., Badr O., Shathele M. 2020. Impact of dietary zinc oxide nanoparticles on selected serum biomarkers, lipid peroxidation and tissue gene expression of antioxidant enzymes and cytokines in Japanese quail. BMC Vet Res. 16, 349.
Mittler R., 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7(9), 405-410.
Koivula M.J., Eeva T., 2010. Metal-related oxidative stress in birds. Environ Pollut. 158, 2359-2370.
Tahannejad Z., Dayer D., Samie M., 2012. The levels of Serum Alkaline Phosphatase and Lactate Dehydrogenase in Hodgkin Lymphoma. IJBC. 3, 125-128.
Vandebriel R.J., De Jong W.H., 2012. A review of mammalian toxicity of ZnO nanoparticles. Nanotechnol Sci Appl. 5, 61-71.
Phillips J.D., 2019. Heme biosynthesis and the porphyrias. Mol Genet Metab. 128(3), 164-177.
Rocha J.B.T., Saraiva R.A., Garcia S.C., Gravina F.S., Nogueira C.W., 2012. Aminolevulinate dehydratase (δ-ALA-D) as marker protein of intoxication with metals and other pro-oxidant situations. Toxicol Res. (Camb.) 1, 85-102.
De Lucca L., Rodrigues F., Jantsch L.B., Kober H., Neme W.S., Gallarreta F.M.P., Gonçalves T.L., 2016. Delta-aminolevulinate dehydratase activity and oxidative stress markers in preeclampsia. Biomed Pharmacother. 19, 224-229.
Schmatz R., Perreira L.B., Stefanello N., Mazzanti C., Spanevello R., Gutierres J., Bagatini M., Martins C.C., Abdalla F.H., da Silva Serres J.D., Zanini D., Vieira J.M., Cardoso A.M., Schetinger M.R., Morsch V.M., 2012. Effects of resveratrol on biomarkers of oxidative stress and on the activity of delta aminolevulinic acid dehydratase in liver and kidney of streptozotocin-induced diabetic rats. Biochimie 94(2), 374-383.
Pellegrini N., Vitaglione P., Granato D., Fogliano V., 2020. Twenty-five years of total antioxidant capacity measurement of foods and biological fluids: Merits and limitations. J Sci Food Agri. 100(14), 5064-5078.
Serafini M., Del Rio D., 2004. Understanding the association between dietary antioxidants, redox status and disease: is the Total Antioxidant Capacity the right tool? Redox Report. 9(3), 145-152.
Wang L., Zhang L., Niu Y., Sitia R., Wang C.C., 2014. Glutathione peroxidase 7 utilizes hydrogen peroxide generated by Ero1ato promote oxidative protein folding. Antioxid Redox Signal. 20(4), 545-556.
Prior R.L., Cao G., 1999. In vivo total antioxidant capacity: comparison of different analytical methods. Free Radic Biol Med. 27(11-12), 1173-1181.