Synthesis and Characterization of New Poly(ether sulfones) from 4,4'-(arylpyridine-2,6-diyl)diphenol and Bis(fluorophenyl)sulfone
Subject Areas : PolymerKamran Mahooti 1 , Masoud Mokhtary 2 * , Hassan Kefayati 3
1 - Department of Chemistry, Rasht Branch, Islamic Azad University, Rasht, Iran.
2 - Department of Chemistry, Rasht Branch, Islamic Azad University, Rasht, Iran.
3 - Department of Chemistry, Rasht Branch, Islamic Azad University, Rasht, Iran
Keywords:
Abstract :
In this research, a series of new poly(ether sulfone) derivatives were prepared by the direct condensation of 4,4'-(arylpyridine-2,6-diyl)diphenols with bis(fluorophenyl)sulfone in the presence of K2CO3 in DMSO/toluene at 180°C. The synthetic polymers show good solubility in polar aprotic solvents, such as DMSO, NMP, DMF, as well as in THF. The resulting gel permeation chromatography (GPC) analysis of poly (ether sulfones) indicates moderate molecular weights (Mw) in the range of 1625-4185 g/mol. Using differential scanning calorimetry, the glass transition temperatures of the poly (ether sulfones) were determined to be within the range of 157–181°C.Thermogravimetric analysis data for these polymers showed the 10% weight loss temperatures to be within the range of 177–377°C. The char yields of the polymers at 600°C ranged from about 43–62%. This method provides a simple polymerization process for the convenient preparation of poly(ether sulfones).
[1]. Z.L. Xu, F.A.Qusay, J. Membr. Sci., 233,101 (2004).
[2]. R. Guo, J.E.McGrath, Comprehensive Polymer Science, 2 (2011).
[3]. M.B. Alkindy, V. N addeo, F. Banat , S.W. Hasan, Water Sci. Technol., 81,1354 (2020).
[4]. O.T. Mahlangu , R. Nackaerts, B.B. Mamba , A. R. D. Verliefde, Water Sci. Technol., 76, 501
(2017).
[5]. Y.Z. Fu, A. Manthiram, J. Power Sources, 157, 222 (2006).
[6]. Nasseri S, Ebrahimi S, Abtahi M, R. Saeedi, J. Environ. Manage., 205, 174 (2018).
[7]. Z. Wang, Z. Wang, Y. Bai, B. Fu, H. Liu, A. Song, Z. Zhang, M. Zhang, Catal. Commun.,
27,164 (2012).
[8]. B. Wang, C. Sun, Y. Li, L. Zhao, W.S.W. Ho, P.K. Dutta, Microporous Mesoporous
Mater., 208, 72 (2015).
[9]. V. Hamciue, D. Gurgiu, E. Butuc, M. Marcu, Polym. Bull., 37, 329 (1996).
[10]. O. Petreus, E. Avram, D. Serbezeanu, Polym. Eng. Sci., 48 (2010).
[11]. Q. Shi, Y. Su, S. Zhu, C. Li, J. Membr. Sci., 303, 204 (2007).
[12]. Y. Yang, Z. Shi, S. Holdcroft, Macromolecules, 37, 1678 (2004).
[13]. S.C. Sutradhar, F, Ahmed, N.S. Lopa, T. Ryu, H. Yang, S. Yoon, S. Lee, I. Choi, W. Kim,
The 9th International Renewable Energy Congress (2018).
[14]. S. Dattilo, C. Puglisi, E.F. Mirabella, A. Spina, A.A. Scamporrino, D.C. Zampino, I. Blanco,
G. Cicala, G. Ognibene, C.D. Mauro, F. Samperi, Polymers, 12, 1810 (2020).
[15]. S.S. Nagane, S.S. Kuhire, S.R. Mane, P.P. Wadgaonkar, Polym. Chem., 10, 1089 (2019).
[16]. C. Wang, Y. Zhou, B. Shen, X. Zhao, J. Li, Q. Ren, Polym. Chem., 9, 4984 (2018).
[17]. A.K. Mohantya, S. Devaraju, N. Kim, H.J. Paik, Solid State Ion., 314, 46 (2018).
[18]. M.M. Lakouraj, M. Mokhtary Polym. Int., 58, 1167 (2009).
[19]. M.M. Lakouraj, M. Mokhtary, J. Polym. Res., 16, 681 (2009)