GENERALIZATION OF TITCHMARSH'S THEOREM FOR THE GENERALIZED FOURIER-BESSEL TRANSFORM
Subject Areas : International Journal of Mathematical Modelling & ComputationsS. El ouadih 1 * , R. Daher 2 , M. El hamma 3
1 - Department of Mathematics, Faculty of Sciences A¨ın Chock,University Hassan II,
Casablanca, Morocco;
2 - Department of Mathematics, Faculty of Sciences A¨ın Chock,University Hassan II,
Casablanca, Morocco
3 - Department of Mathematics, Faculty of Sciences A¨ın Chock,University Hassan II,
Casablanca, Morocco.
Keywords: generalized translation operator, singular dierential operator, generalized Fourier-Bessel transform, generalized translation operatorsingular dierential operator,
Abstract :
In this paper, using a generalized translation operator, we prove theestimates for the generalized Fourier-Bessel transform in the space L2on certainclasses of functions.
R. F. Al Subaie and M. A. Mourou, The continuous wavelet transform for a Bessel type
operator on the half line, Mathematics and Statistics 1(4): 196-203, 2013.
V. A. Abilov and F. V. Abilova, Approximation of functions by Fourier-Bessel sums, Izv.
Vyssh. Uchebn. Zaved., Mat., No. 8, 3-9 (2001).
V.S.Vladimirov, Equations of mathematical physics, Marcel Dekker, New York,1971,Nauka,
Moscow,1976.
B.M.Levitan, Expansion in Fourier series and integrals over Bessel functions, Uspekhi
Math.Nauk, 6,No.2,102-143,1951.
Titchmarsh.EC , Introduction to the theory of Fourier integrals . Claredon , oxford, 1948,
Komkniga.Moxow.2005.
R. F. Al Subaie and M. A. Mourou, Transmutation operators associated with a Bessel type
operator on the half line and certain of their applications, Tamsii. oxf. J. Inf. Math. Scien 29
(3) (2013), pp. 329-349.
A.G.Sveshnikov,A.N.Bogolyubov and V.V.Kratsov, Lectures on mathematical physics,
Nauka, Moscow,2004)[in Russian].
Platonov.SS, The Fourier transform of function satisfying the Lipshitz condition on rank 1
symetric spaces , Siberian Math.J.46(2) (2005), 1108-1118.