Numerical Study of Two Reaction Mechanisms on Delft Flame III Using Large Eddy Simulation and Conditional Moment Closure Approach
Subject Areas : International Journal of Industrial Mathematics
1 - Aerospace Research Institute of Iran, Tehran, Iran
Keywords: Non-premixed Flame, Chemical Reaction Mechanism, Large Eddy Simulation, Turbulent Combustion, Conditional Moment Closure,
Abstract :
A conditional moment closure model is adopted together with a state-of- the-art LES approach to simulate the target flame of the TNF workshop, Delft piloted methane flame III. For modeling the sub-grid scales, the constant Smagorinky model and the Dynamic Wale model are used in this study. First order conditional moment closure is used to model the turbulence-chemistry interaction. To calculate the conditional velocity, conditional volume averaging with smoothing is used. Two different models are used for computing the conditional scalar dissipation. One is the same procedure for the calculating conditional velocity i.e., volume averaging, and the other is to use Amplitude Mapping Closure model. A second order time accurate predictor-corrector method is used for time integration of the Favre filtered Navier-Stokes equations.
[1] R. W. Bilger, S. H. Starner, R. J. Kee, On reduced mechanisms for methane|air combustion in nonpremixed flame, Combustion and Flame 80 (1990) 135-149.
[2] N. Branley, W. P. Jones, Large eddy simulation of a turbulent non-premixed flame, Combustion and Flame 127 (2001) 1914-1934.
[3] P. N. Brown, G. D. Byrne, A. C. Hindmarsh, VODE, a variable-coefficient ODE solver, SIAM Journal on Scientific Computing 10 (1989) 1038-1051.
[4] C. M. Cha, G. Kosaly, H. Pitsch, Modeling extintion and reignition in turbulent nonpremixed combustion using a doublyconditional moment closure approach, Physics of Fluids 13 (2001) 3824-3834.
[5] A. J. Chorin, Numerical solution of the Navier-Stokes equations, Mathematics of Computation 22 (1968) 745-762.
[6] M. Fairweather, R. M. Woolley, First-order conditional moment closure modeling of turbulent, nonpremixed hydrogen flames, Combustion and Flame 133 (2003) 393-405.
[7] M. Fairweather, R. M. Woolley, First-order conditional moment closure modeling of turbulent, nonpremixed methane flames, Combustion and Flame 138 (2004) 3-19.
[8] E. Fernandez-Tarrazo, A. L. Sanchez, A. Linan, F. A. Williams, A simple onestep chemistry model for partially premixed hydrocarbon combustion, Combustion and Flame 147 (2006) 32-38.
[9] S. S. Girimaji, Y. Zhou, Analysis and modeling of subgrid scalar mixing using numerical data, Physics of Fluids 8 (1996) 1224-1236.
[10] A. Kronenburg, Double conditioning of reactive scalar transport equations in turbulent nonpremixed flames, Physics of Fluids 16 (2004) 2640-2648.
[11] E. Mastorakos, R. W. Bilger, Second-order conditional moment closure for the autoignition of turbulent flows, Physics of Fluids 10 (1998) 1246-1248.
[12] B. Merci, D. Roekaerts, B. Naud, Study of the performance of three micromixing models in transported scalar PDF simulations of a piloted jet diffusion flame ("Delft flame III"), Combustion and Flame 144 (2006) 476-493.
[13] S. Navarro-Martinez, A. Kronenburg, F. di Mare, Conditional moment closure for large eddy simulation, Flow, Turbulence and Combustion 75 (2005) 245-274.
[14] S. Navarro-Martinez, A. Kronenburg, LESCMC simulations of a turbulent bluff-body flame, Proceedings of the Combustion Institute 31 (2007) 1721-1728.
[15] S. Navarro-Martinez, A. Kronenburg, LESCMC simulations of a lifted methane flame, Proceedings of the Combustion Institute 32 (2009) 1509-1516.
[16] T. W. J. Peeters, P. P. J. Stroomer, J. E. De Vries, D. J. E. M. Roekaerts, C. J. Hoogendoorn, Comparative experimental and numerical investigation of a piloted turbulent natural-gas diffusion flame, Proceedings of the Combustion Institute 25 (1994) 1241-1248.
[17] H. Pitsch, H. Steiner, Large-eddy simulation of a turbulent piloted methane/air diffusion flame (Sandia flame D), Physics of Fluids 12 (2000) 2541-2554.
[18] H. Pitsch, Large-eddy simulation of turbulent combustion, Annual Review of Fluid Mechanics 38 (2006) 453-482.
[19] D. Roekaerts, B. Merci, B. Naud, Comparison of transported scalar PDF and velocityscalar PDF approaches to ’Delft flame III’, Comptes Rendus Mecanique 334 (2006) 507-516.
[20] M. R. Roomina, R. W. Bilger, CMC predictions of a turbulent methane-air jet flame, Combustion and Flame 125 (2001) 1176-1195.
[21] M. R. H. Sheikhi, T. G. Drozda, P. Givi, F. A. Jaberi, S. B. Pope, Large eddy simulation of a turbulent nonpremixed piloted methane jet flame (Sandia flame D), Proceedings of the Combustion Institute 30 (2005) 549-556.
[22] J. Smagorinsky, General circulation experiments with the primitive equation, Monthly Weather Review 91 (1963) 99-165.
[23] M. Smooke, I. Puri, K. Seshadri, A comparison between numerical calculations and experimental measurements of the structure of a counterflow diffusion flame burning diluted methane in diluted air, Twenty-First Symposium (International) on Combustion, The Combustion Institute, Pittsburgh (1986) 1783-1792.
[24] E. H. van Veen, D. Roekaerts, On the accuracy of temperature measurements in turbulent jet diffusion flames by coherent antistokes raman spectroscopy, Combustion Science and Technology 175 (2003) 1893-1914.
[25] Y. M. Wright, G. de Paola, K. Boulouchos, E. Mastorakos, Simulations of spray autoignition and flame establishment with twodimensional CMC, Combustion and Flame 143 (2005) 402-419.