Identification of Fe3+ content in Epidote from Varan, Urumieh-Dokhtar magmatic arc, Iran: using FTIR and Raman spectroscopy
Subject Areas :
Mineralogy
Bahman Rahimzadeh
1
,
Zheira Ghosoun
2
,
Fariborz Masoudi
3
1 - School of Earth Sciences, Shahid Beheshti University, Tehran, Iran
2 - School of Earth Sciences, Shahid Beheshti University, Tehran, Iran
3 - School of Earth Sciences, Shahid Beheshti University, Tehran, Iran
Received: 2021-03-01
Accepted : 2021-07-05
Published : 2021-07-05
Keywords:
Iran,
Epidote,
Urumieh-Dokhtar Magmatic Arc,
Raman spectroscopy,
FTIR,
Abstract :
This study is aimed to determine the Fe content in natural epidote from Varan area (Urumieh-Dokhtar Magmatic Arc, Iran) by using vibrational FTIR and Raman spectroscopy and EPMA analyses. Fe3+ concentration calculated from FTIR spectroscopic data is in the range of 0.96 to 1 apfu. The results are in complete agreement with EPMA data. The comparison between obtained Raman spectra of studied epidote grains and those from the RRUFF database suggest that epidote from Varan area is rich in Fe3+. High Fe3+ content might reflect moderate to high oxygen fugacity during the crystallization of epidote. This short paper demonstrates that the quantification of the Fe content in epidote via FTIR method is as good as EPMA, whereas the utilization of a low-cost Raman spectrometer helps in quickly distinguishing between Fe-rich and Fe-poor epidote, which even could be useful in the case of field studies.Key-words: Epidote, FTIR, Raman spectroscopy, Iron content, Urumieh-Dokhtar Magmatic Arc, Iran.
References:
Alavi M (1994) Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics 229: 211–238.
Armbruster T, Bonazzi P, Akasaka M, Bermanec V, Chopin C, Gieré R, Heuss-Assbichler S, Liebscher A, Menchetti S, Pan Y, Pasero M (2006) Recommended nomenclature of Epidote-group minerals. European Journal of Mineralogy 18: 551-567.
Baratian M, Arian MA, Yazdi A (2018) Petrology and petrogenesis of the SiahKuh intrusive Massive in the South of KhoshYeilagh, Amazonia Investiga 7 (17): 616-629.
Bina M, Arian MA, Pourkermani M, Bazoobandi MH, Yazdi A (2020) Study of the petrography and tectonic settings of sills In Lavasanat district, Tehran (north of Iran), Nexo Revista Cientifica 33(2): 286-296.
Bird DK, Spieler AR (2004) Epidote in geothermal systems. Reviews in Mineralogy and Geochemistry, Mineralogical Society of America 56: 235-300.
Campos-Alvarez NO, Samson IM, Fryer BJ, Ames DE (2010) Fluid sources and hydrothermal architecture of the Sudbury Structure: Constraints from femtosecond LA-MC-ICP-MS Sr isotopic analysis of hydrothermal Epidote and calcite. Chemical Geology 278: 131-150.
Chukanov NV, Göttlicher J, Möckel S, Sofer Z, Van KV, Belakovskiy DI (2010) Åskagenite-(Nd), Mn2+ NdAl2Fe3+ (Si2O7)(SiO4)O2, a new mineral of the Epidote supergroup. New Data on Minerals 45: 17-22.
Čobić A (2015) Characterization of metamict minerals with complex crystal-chemical properties–allanite example, PhD thesis, University of Zagreb, 193 p.
Deer WA, Howie RA, Zussman J (2013) An introduction to the rock-forming minerals. The mineralogical society, 3rd Ed., London.
Della Ventura G, Mottana A, Parodi GC, Griffin WL (1996) FTIR spectroscopy in the OH-stretching region of monoclinic Epidotes from Praborna (St. Marcel, Aosta Valley, Italy). European Journal of Mineralogy 8: 655-665.
Dollase WA (1968) Refinement and comparison of the structures of zoisite and clinozoisite. American Mineralogist: Journal of Earth and Planetary Materials 53: 1882-1898.
Ferreira VP, Sial AN, Pimentel MM, Armstrong R, Spicuzza MJ, Guimarães IP, da Silva Filho AF (2011) Contrasting sources and PT crystallization conditions of Epidote-bearing granitic rocks, northeastern Brazil: O, Sr, and Nd isotopes. Lithos 121: 189-201.
Franz G, Liebscher A (2004) Physical and Chemical Properties of the Epidote Minerals–An Introduction–. Reviews in mineralogy and geochemistry, Mineralogical Society of America 56: 1-81.
Freiberger R, Boiron MC, Cathelineau M, Cuney M, Buschaert S (2001) Retrograde P–T evolution and high temperature–low pressure fluid circulation in relation to late Hercynian intrusions: a mineralogical and fluid inclusion study of the Charroux‐Civray plutonic complex (north‐western Massif Central, France). Geofluids 1: 241-256.
Gabe EJ, Portheine JC, Whitlone SH (1973) A reinvestigation of the epidote structure: confirmation of the iron location. American Mineralogist: Journal of Earth and Planetary Materials 58: 218-223.
Gavorkyan SV (1990) IR spectra of Epidote-group minerals. Mineralogiceskij zurnal 12: 63-66 (in Russian).
Ghalamghash J, Babakhani AR (1996) Geological Map of Kahak: Geological Survey of Iran, Scale 1:100000 Sheet.
Gieré R, Sorensen SS (2004) Allanite and other REE-rich Epidote-group minerals. Reviews in Mineralogy and Geochemistry, Mineralogical Society of America 56: 431-493.
Huang E (1999) Raman spectroscopic study of 15 gem minerals. Journal of the Geological Society of China 42: 301-318.
Janeczek J, Sachanbinski M (1989) Chemistry and zoning of thulite from the Wiry magnesite deposit, Poland. Neues Jahrbuch Fur Mineralogie-Monatshefte 7: 325-333.
Khademi Parsa M (2017) Petrology of ore related intrusive and subvolcanic rocks and their aureoles in NE Delijan (Urumieh-Dokhter magmatic arc). Ph.D. thesis, Department of Minerals & Groundwater Resources, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran.
Klemd R (2004) Fluid inclusions in Epidote minerals and fluid development in Epidote bearing rocks. Reviews in mineralogy and geochemistry 56: 197-234.
Langer K, Raith M (1974) Infrared spectra of Al-Fe (III)-Epidotes and zoisites, Ca2 (Al1-p Fe3+p) Al2O (OH)[Si2O7][SiO4]. American Mineralogist: Journal of Earth and Planetary Materials 59: 1249-1258.
Liebscher A (2004) Spectroscopy of epidote minerals. Reviews in Mineralogy and Geochemistry 56: 125-170.
Makreski P, Jovanovski G, Kaitner B, Gajović A, Biljan T (2007) Minerals from Macedonia: XVIII. Vibrational spectra of some sorosilicates. Vibrational Spectroscopy 44: 162-170.
McFarlane CR (2016) Allanite UPb geochronology by 193 nm LA ICP-MS using NIST610 glass for external calibration. Chemical Geology 438: 91-102.
Mingsheng P, Dien L (1987) Spectroscopy, genesis, and process properties of partly metamict allanite. J Central-South Inst Mining Metall 18: 362-368.
Pandit D, Panigrahi MK, Moriyama T (2014) Constrains from magmatic and hydrothermal Epidotes on crystallization of granitic magma and sulfide mineralization in Paleoproterozoic Malanjkhand Granitoid, Central India. Geochemistry 74: 715-733.
Perseil EA (1987) Particularités des piémontites de Saint-Marcel-Praborna (Italie); spectres IR. Congrès National des Sociétés Savantes 112: 209-215 (in French).
Petrusenko S, Taran MN, Platonov AN, Gavorkyan SV (1992) Optical and infrared spectroscopic studies of Epidote group minerals from the Rhodope region. Spisanie na B ″lgarskoto geologičesko družestvo 53: 1-9.
Sarem MN, Abedini MV, Dabiri R, Ansari MR (2021) Geochemistry and petrogenesis of basic Paleogene volcanic rocks in Alamut region, Alborz mountain, north of Iran. Earth Sciences Research Journal 25(2):237-45.
Spear FS (1993) Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths. Mineralogical Society of America, Washington 60:992-3.
Varlamov DA, Ermolaeva VN, Chukanov NV, Jančev S, Vigasina MF, Plechov PY (2019) New data on chemical composition and Raman spectra of Epidote-supergroup minerals. In Proceedings of the Russian Mineralogical Society 148: 79-99.
Whitney DL, Evans BW (2010). Abbreviations for names of rock-forming minerals. American Mineralogist 95: 185–187.
Yavuz F, Yildirim DK (2018) A Windows program for calculation and classification of Epidote-supergroup minerals. Periodico di Mineralogia 87: 269-285.
Yazdi A, Shahhosseini E, Moharami F (2022) Petrology and tectono-magmatic environment of the volcanic rocks of West Torud–Iran, Iranian Journal of Earth Sciences 14(1): 40-57.