The Effect of SNP c.100800G > A on CAST|Cfr13I Gene Polymorphisms with Ultrasound Imaging of Meat Characteristics and Growth Traits in Bali Cattle
Subject Areas : CamelN.M.P. Setyani 1 , R. Priyanto 2 , J. Jakaria 3 *
1 - Department of Animal Production and Technology, Faculty of Animal Science, Bogor Agricultural University, Bogor, Indonesia
2 - Department of Animal Production and Technology, Faculty of Animal Science, Bogor Agricultural University, Bogor, Indonesia
3 - Department of Animal Production and Technology, Faculty of Animal Science, Bogor Agricultural University, Bogor, Indonesia
Keywords: PCR-RFLP, growth traits, Bali cattle, <i>CAST</i> gene, meat characteristics, ultra-sound,
Abstract :
Bali cattle are known as native cattle from Indonesia, which commonly utilized as beef-producing animals. Calpastatin gene (CAST) plays essential role in meat quality. The aim of this study was to verify the effect of single-nucleotide polymorphism (SNP) c.100800G>A on the CAST|Cfr13I gene associated with meat characteristics and growth traits in Bali cattle. The meat characteristics, growth traits profile, and blood samples of Bali cattle (n=52 animals) obtained from BPTU Bali Cattle Denpasar, Bali Province. Comparison used were Belgian Blue (n=30 animals), Wagyu (n=7 animals), Limousin (n=14 animals), and Peranakan Onggole (PO) (n=30 animals). Ultrasound measurement was conducted to study the meat characteristics. The examination of the CAST gene polymorphisms used polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method digested by Cfr13I enzyme and the analysis of effect of the CAST|Cfr131 gene on meat characteristics and growth traits in Bali cattle used t test with SAS 9.4 program. Bali cattle revealed polymorphic homozygous genotype (GG) and heterozygous genotype (GA) with allele frequencies of G and A were 0.923 and 0.077, respectively. In comparison, other breeds beef cattle, including Belgian Blue, Limousin, Wagyu, and PO, showed only the GG genotype with allele frequency of G was 1.000. The CAST|Cfr13I gene showed no significant association (P>0.05) with Bali cattle meat characteristics and growth traits. In conclusion, the SNP c.100800G > A may not be purposed as a marker for Bali cattle meat characteristics and growth traits. It was suggested that further study with a higher number of animals would be necessary to validate the effect of the SNP c.100800G > A on the CAST gene with the actual beef cutting of Bali cattle.
Allendorf F.W., Hohenlohe P.A. and Luikart G. (2010). Genomics and the future of conservation genetics. Nat Rev. Genet. 11, 697-709.
Barnoy S., Maki M. and Kosower N.S. (2005). Overexpression of calpastatin inhibits L8 myoblast fusion. Biochem. Biophys. Res. Commun. 332, 697-701.
Busch W.A., Stromer M.H., Goll D.E. and Suzuki A. (1972). Ca2+-specific removal of Z lines from rabbit skeletal muscle. J. Cell Biol. 52, 367-381.
Calvo J.H., Iguácel L.P., Kirinus J.K., Serrano M., Ripoll G., Casasús I., Joy M., Pérez-velasco L., Sarto P., Albertí P. and Blanco M. (2014). A new single nucleotide polymorphism in the calpastatin (CAST) gene associated with beef tenderness. Meat Sci. 96, 775-782.
Chesnokov Y.V. and Artemyeva A.M. (2015). Evaluation of the measure of polymorphism information of genetic diversity. Agric. Biol. 50, 571-578.
Curi R.A., Chardulo L.A.L., Giusti J., Silveira A.C., Martins C.L. and de Oliveira H.N. (2010). Assessment of GH1, CAPN1 and CAST polymorphisms as markers of carcass and meat traits in Bos indicus and Bos taurus-Bos indicus cross beef cattle. Meat Sci. 86, 915-920.
Dedieu S., Poussard S., Mazerem G., Grise F., Dargelos E. and Cottin P. (2004). Myoblast migration is regulated by calpain through its involvement in cell attachment and cytoskeletal organization. Exp. Cell Res. 292, 187-200.
Enriquez-Valencia C.E., Pereira G.L., Malheiros J.M., de Vasconcelos Silva J.A.I.I., Albuquerque L.G., de Oliveira H.N., Chardulo L.A.L. and Curi R.A. (2017). Effect of the g.98535683A > G SNP in the CAST gene on meat traits of Nellore beef cattle (Bos indicus) and their crosses with Bos taurus. Meat Sci. 123, 64-66.
Ghamari Monavvar H., Moghaddam G. and Ebrahimi M. (2020). A review on the effect of arginine on growth performance, meat quality, intestine morphology, and immune system of broiler chickens. Iranian J. Appl. Anim. Sci. 10(4), 587-594.
Gorlov I.F., Shirokova N.V. and Randelin A.V. (2016). CAST/MspI gene polymorphism and its impact on growth traits of Soviet Merino and Salsk sheep breeds in the South European part of Russia. Turkish J. Vet. Anim. Sci. 40, 399-405.
Guimarães L., Oliveira D., Francisquine E., Steadham E.M., Hu E. and Lonergan S.M. (2019). Association of calpain and calpastatin activity to postmortem myofibrillar protein degradation and sarcoplasmic proteome changes in bovine Longissimus lumborum and Triceps brachii. Meat Sci. 155, 50-60.
Hashim H.O. and Al-Shuhaib M.B.S. (2019). Exploring the potential and limitations of PCR-RFLP and PCR-SSCP for SNP detection: A review. J. Appl. Biotechnol. Rep. 6, 137-144.
Hocquette J.F., Gondret F., Baza E., Mdale F., Jurie C. and Pethick D.W. (2010). Intramuscular fat content in meat-producing animals: Development, genetic and nutritional control, and identification of putative markers. Animal. 4, 303-319.
Ismail R., Handiwirawan E., Elieser S. and Jakaria J. (2020). Polymorphism of 5’UTR myostatin gene indel (g.1256/TTTTA) and its association with body weight in Boerka crossbred goat. J. Indonesian Trop. Anim. Agric. 45, 163-172.
Jakaria K.H., Priyanto R., Baihaqi M. and Ulum M.F. (2017). Prediction of meat quality in Bali cattle using ultrasound imaging. J. Indones. Trop. Anim. Agric. 42, 59-65.
Jr R.G.T., Cushman R.A., Mcneel A.K., Casas E., Smith T.P.L., Freetly H.C. and Bennett G.L. (2018). Theriogenology m-calpain (CAPN1), calpastatin (CAST), and growth hormone receptor (GHR) genetic effects on Angus beef heifer performance traits and reproduction. Theriogenology. 113, 1-7.
Kappes S.M., Keele J.W., Stone R.T., Mc Graw R.A., Sonstegard T.S., Smith T.P.L., Lopez-Corrales N.L. and Beatie C.W. (1997). A Second-generation linkage map of the bovine genome. Genome Res. 7, 235-249.
Kim T. (2015). T-test as a parametric statistic. Korean J. Anesthesiol. 68, 540-546.
Krzęcio E., Koćwin-Podsiadła M., Kurył J., Zybert A., Sieczkowska H., Antosik K. and Koc M. (2008). The effect of interaction between genotype CAST/RsaI (calpastatin) and MYOG/MspI (myogenin on carcass and meat quality in pigs free of RYR1 T allele. Meat Sci. 80, 1106-1115.
Lambe N.R., Ross D.W., Navajas E.A., Hyslop J.J., Prieto N., Craigie C., Bünger L., Simm G. and Roehe R. (2010). The prediction of carcass composition and tissue distribution in beef cattle using ultrasound scanning at the start and / or end of the finishing period. Livest. Sci. 131, 193-202.
Lee S., Kim S., Chai H., Cho S., Kim H., Lim D., Choi B., Dang C., Sharma A., Gondro C., Yang B. and Hong S. (2014). Mutations in calpastatin and μ-calpain are associated with meat tenderness , flavor, and juiciness in Hanwoo (Korean cattle): Molecular modeling of the effects of substitutions in the calpastatin/μ-calpain complex. Meat Sci. 96, 1501-1508.
Li Y.X., Jin H.G., Yan C.G., Seo K.S., Zhang L.C., Ren C.Y. and Jin X. (2013). Association of CAST gene polymorphisms with carcass and meat quality traits in Yanbian cattle of China. Mol. Biol. Reprod. 40, 1875-1881.
Li J., Zhang L., Gan Q., Li J., Gao H. and Yuan Z. (2010). Association of CAST gene polymorphisms with carcass and meat quality traits in chinese commercial cattle herds. Asian-Australian J. Anim. Sci. 23, 1405-1411.
MacHado A.L., Meira A.N., Muniz E.N., Azevedo H.C., Coutinho L.L., Mouraõ G.B., Pedrosa V.B. and Pinto L.F.B. (2020). Single loci and haplotypes in CAPN1 and CAST genes are associated with growth, biometrics, and in vivo carcass traits in Santa Inês sheep. Ann. Anim. Sci. 20, 465-483.
Melendez L.J. and Marchello J.A. (2014). The efficacy of ultrasound to determine certain carcass traits in Grains-fed beef cattle. Int. J. Sci. Comput. Hum. 2, 145-154.
Moonesinghe R., Yesupriya A., Chang M.H., Dowling N.F., Khoury M.J. and Scott A.J. (2010). A hardy-weinberg equilibrium test for analyzing population genetic surveys with complex sample designs. Am. J. Epidemiol. 171, 932-941.
Moyen C., Goudenege S., Poussard S., Sassi A.H., Brustis J.J. and Cottin P. (2004). Involvement of micro-calpain (CAPN1) in muscle cell differentiation. Int. J. Biochem. Cell Biol. 36, 728-43.
Nakaya H.I., Amaral P.P., Louro R., Lopes A., Fachel A.A., Moreira Y.B., El-Jundi T.A., da Silva A.M., Reis E.M. and Verjovski-Almeida S. (2007). Genome mapping and expression analyses of human intronic noncoding RNAs reveal tissue-specific patterns and enrichment in genes related to regulation of transcription. Genome Biol. 8, 4303-4325.
Nikmard M., Molaee V., Eskandarinasab M.P., Djadid N.D. and Vajhi A.R. (2012). Calpastatin polymorphism in Afshari sheep and its possible correlation with growth and carcass traits. J. Appl. Anim. Res. 40, 346-350.
Noor R.R. (2010). Genetika Ternak. Penebar Swadaya, Jakarta, Indonesia.
Palmer B.R., Roberts N., Hickford J.G.H. and Bickerstaffe R. (1998). Rapid Communications: PCR-RFLP for MspI and NcoI in the ovine calpastatin gene. American Soc. Anim. Sci. 76, 1499-1500.
Pereira F., Carneiro J. and Amorim A. (2008). Identification of species with DNA-based technology: current progress and challenges. Rec. Paten. DNA Gene Seq. 2, 187-199.
Pinto L.F., Ferraz J.B., Meirelles F.V., Eler J.P., Rezende F.M., Carvalho M.E., Almeida H.B. and Silva R.C. (2010). Association of SNPs on CAPN1 and CAST genes with tenderness in Nellore cattle. Genet. Mol. Res. 9, 1431-1442.
Pintos D. and Corva P.M. (2011). Association between molecular markers for beef tenderness and growth traits in Argentinian Angus cattle. Anim. Genet. 42, 329-332.
Pratiwi N. (2016). Analisis keragaman gen kalpastatin (CAST) dan kalpain-1 (CAPN1) terhadap karakteristik karkas dan daging pada sapi Bali. MS Thesis. Institut Pertanian Bogor Univ., Bogor, Indonesia.
Purwantara B., Noor R.R., Andersson G. and Rodriguez-Martinez H. (2012). Banteng and Bali cattle in Indonesia: Status and forecasts. Reprod. Domest. Anim. 47, 2-6.
Putri R., Priyanto R., Gunawan A. and Jakaria A. (2015). Association of calpastatin (CAST) gene with growth traits and carcass characteristics in Bali cattle. Med. Petern. 38, 145-149.
Raynaud P., Jayat-Vignoles C., Laforêt M.P., Levéziel H. and Amarger V. (2005). Four promoters direct expression of the calpastatin gene. Arch. Biochem. Biophys. 437, 69-77.
Raza S.H.A., Khan R., Abdelnour S.A., El-Hack M.E.A., Khafaga A.F., Taha A., Ohran H., Mei C., Schreurs N.M. and Zan L. (2019). Advances of molecular markers and their application for body variables and carcass traits in Qinchuan cattle. Gen. Basel. 10, 1-4.
SAS Institute. (2004). SAS®/STAT Software, Release 9.4. SAS Institute, Inc., Cary, NC. USA.
Setiaji R., Prastowo S., Prasetio D. and Widyas N. (2019). Phenotypic and genetic correlations of growth traits in Bali cattle breeding population phenotypic and genetic correlations of growth traits in Bali cattle breeding population. Earth Environ. Sci. 372, 1-6.
Sun Y.L. and Lin C.S. (2003). Establishment and application of a fluorescent polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method for identifying porcine, caprine, and bovine meats. J. Agric. Food. Chem. 51, 1771-1776.
Suryanto E., Bulkaini B., Ashari A. and Karda I.W. (2014). Carcass quality, marbling and cholesterol content of male Bali cattle fed fermented cocoa shell. J. Indonesian Trop. Anim. Agric. 39, 249-255.
Tizioto P.C., Decker J.E., Taylor J.F., Schnabel R.D., Mudadu M.A., Silva F.L., Mourão G.B., Coutinho L.L., Tholon P., Sonstegard T.S., Rosa A.N., Alencar M.M., Tullio R.R., Medeiros S.R., Nassu R.T., Feijó G.L.D., Silva L.O.C., Torres R.A., Siqueira F., Higa R.H. and Regitano L.C.A. (2013). Genome scan for meat quality traits in nelore beef cattle. Physiol. Genom. 45, 1012-1020.
Van Ba H., Reddy B.V. and Hwang I. (2014). Role of calpastatin in the regulation of mRNA expression of calpain, caspase, and heat shock protein systems in bovine muscle satellite cells. In vitro Cell. Dev. Biol. Anim. 51, 447-454.
Volkandari S.D., Margawati E.T., Indriawati I. and Talib C. (2017). Identification SNPs 257 calpastatin gene associated with meat quality in buffalo. Semn. Biodovers. 6, 87-89.
Wawo A.A. (2018). Effect of bulls on birth rate and birth weight by using semi-intensive Bali cattle maintenance. Chalaza J. Anim. Husband. 3, 24-28.
Williams J.L. (2005). The use of marker-assisted selection in animal breeding and biotechnology. Rev. Sci. Tech. Off. Int. Epiz. 24, 379-391.
Wisesa A., Pemayun T. and Mahardika I. (2012). The D-loop DNA sequence analysis for the mitochondrial DNA of Bali cattle and Banteng compared with other cattle breeds in the world. Indonesian Med. Ver. 1, 281-292.