Characteristics Determination of Rheb Gene and Protein in Raini Cashmere Goat
Subject Areas : Camelم.ر. محمدآبادی 1 * , ف. توحیدی نژاد 2
1 - Department of Animal Science, Shahid Bahonar University of Kerman, Kerman, Iran
2 - Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
Keywords: Goat, interaction, base sequence, isoelectric point,
Abstract :
The aim of the present study was todeterminecharacteristics of Rheb gene and protein in Raini Cashmere goat. Comparative analyses of the nucleotide sequences were performed. Open reading frames (ORFs), theoretical molecular weights of deduced polypeptides, the protein isoelectric point, protein characteristics and three-dimensional structures was predicted using online standard softwares. The full cDNA nucleotide sequence shares 99%, 99%, 99% and 94% identity with Inner Mongolia Cashmere goat, cattle, horse and human, respectively. The deduced Rheb protein of Raini Cashmere goat consist of 184 amino acid residues and its predicted molecular weight was 20478 g/mol for the unmodified protein and the estimated isoelectric point (pI) was 5.59. Results showed that Rheb has a RAS domain starting at the amino acid 4 and ending at the amino acid 170. In conclusion, our data shows the Rheb cDNA is 555 bp in length, including a complete ORF corresponding to a polypeptide of 184 amino acids. Our results in Raini Cashmere goat showed that there are 1 N-glycosylation sites, 3 protein kinase C phosphorylation sites, 2 casein kinase II phosphorylation sites, 4 microbodies C-terminal targeting signals, 2 ATP/GTP binding sites motif A (P-loop) and a prenyl group binding site for predicted Psites of Rheb. Raini Cashmere goat Rheb protein also had an interaction with other predicted proteins. Hence, can suggest that Rheb has probably role in goat cells and must detect in future investigations.
Askari N., Mohammadabadi M.R. and Baghizadeh A. (2011). ISSR markers for assessing DNA polymorphism and genetic characterization of cattle, goat and sheep populations. Iranian J. Biotechnol. 9, 222-229.
Chen C.C., Hwang J.K. and Yang J.M. (2006). (PS)2: protein structure prediction server. Nucleic Acids Res. 34, 152-157.
Chen C.C., Hwang J.K. and Yang J.M. (2009). (PS)2-v2: template-based protein structure prediction server. BMC Bioinformatics. 10, 366-371.
Dunlop E.A., Dodd K.M., Seymour L.A. and Tee A.R. (2009). Mammalian target of rapamycin complex 1-mediated phosphorylation of eukaryotic initiation factor 4E-binding protein 1 requires multiple protein–protein interactions for substrate recognition. Cell. Signal. 21, 1073-1084.
Hasani M.N., Asadi Fozi M., Esmailizadeh A.K. and Mohammadabadi M.R. (2010). A genetic analysis of growth traits in Raieni Cashmere goat using multivariate animal model. Iranian J. Anim. Sci. 41, 323-329.
Javanmard A., Mohammadabadi M.R., Zarrigabayi G.E., Gharahedaghi A.A., Nassiry M.R., Javadmansh A. and Asadzadeh N. (2008). Polymorphism within the intron region of the bovine leptin gene in Iranian Sarabi cattle (Iranian Bos taurus). Russian J. Genet. 44, 495-497.
Kozlowski L.P. (2016). IPC-Isoelectric point calculator. Biol. Direct. 11, 55.
Kyte J. and Doolittle R.F. (1982). A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105-132.
Letunic I., Doerks T. and Bork P. (2015). SMART: recent updates, new developments and status in 2015. Nucleic Acids Res. 43, 257-260.
Long X., Lin Y., Ortiz-Vega S., Yonezawa K. and Avruch J. (2005). Rheb binds and regulates the mTOR kinase. Curr. Biol. 15, 702-713.
Ma D., Bai X., Guo S. and Jiang Y. (2008). The switch I region of Rheb is critical for its interaction with FKBP38. J. Biol. Chem. 283, 25963-25970.
Marchler-Bauer A., Lu S., Anderson J.B., Chitsaz F., Derbyshire M.K., DeWeese-Scott C., Fong J.H., Geer L.Y., Geer R.C., Gonzales N.R., Gwadz M., Hurwitz D.I., Jackson J.D., Ke Z., Lanczycki C.J., Lu F., Marchler G.H., Li J., Miyamoto K. and McClane B.A. (2011). CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res. 39, 225-229.
Mazhab-Jafari M.T., Marshall C.B., Ishiyama N., Ho J., Di Palma V., Stambolic V. and Ikura M. (2012). An autoinhibited noncanonical mechanism of GTP hydrolysis by Rheb maintains mTORC1 homeostasis. Structure. 20, 1528-1539.
Moghbeli S.M., Barazandeh A., Vatankhah M. and Mohammadabadi M.R. (2013). Genetics and non-genetics parameters of body weight for post-weaning traits in Raini Cashmere goats. Trop. Anim. Health Prod. 45, 1519-1524.
Mohammad Abadi M.R., Askari N., Baghizadeh A. and Esmailizadeh A.K. (2009). A directed search around caprine candidate loci provided evidence for microsatellites linkage to growth and cashmere yield in Rayini goats. Small Rumin. Res. 81, 146-151.
Mohammadabadi M.R., Nikbakhti M., Mirzaee H.R., Shandi A., Saghi D.A., Romanov M.N. and Moiseyeva I.G. (2010). Genetic variability in three native Iranian chicken populations of the Khorasan province based on microsatellite markers. Russian J. Genet. 46, 505-509.
Mohammadi A., Nassiry M.R., Mosafer J., Mohammadabadi M.R. and Sulimova G.E. (2009). Distribution of BoLA-DRB3 allelic frequencies and identification of a new allele in the Iranian cattle breed Sistani (Bos indicus). Russian J. Genet. 45, 198-202.
Patel P.H., Thapar N., Guo L., Martinez M., Maris J., Gau C.L., Lengyel J.A. and Tamanoi F. (2003). Drosophila Rheb GTPase is required for cell cycle progression and cell growth. J. Cell. Sci. 116, 3601-3610.
Ruzina M.N., Shtyfurko T.A., Mohammadabadi M.R., Gendzhieva O.B., Tsedev T. and Sulimova G.E. (2010). Polymorphism of the BoLA-DRB3 gene in the Mongolian, Kalmyk, and Yakut cattle breeds. Russian J. Genet. 46, 456-463.
Schultz J., Milpetz F., Bork P. and Ponting C.P. (1998). SMART, a simple modular architecture research tool: identification of signaling domains. Proc. Natl. Acad. Sci. 95, 5877-5864.
SPSS Inc. (2011). Statistical Package for Social Sciences Study. SPSS for Windows, Version 20. Chicago SPSS Inc.
Szklarczyk D., Franceschini A., Wyder S., Forslund K., Heller D., Huerta-Cepas J., Simonovic M., Roth A., Santos A., Tsafou K.P., Kuhn M., Bork P., Jensen L.J. and von Mering C. (2015). STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids. Res. 43, 447-452.
Tee A.R., Manning B.D., Roux P.P., Cantley L.C. and Blenis J. (2003). Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr. Biol. 13, 1259-1268.
Tohidi nezhad F., Mohammadabadi M.R., Esmailizadeh A.K. and Najmi Noori A. (2015). Comparison of different levels of Rheb gene expression in different tissues of Raini Cashmir goat. J. Agric. Biotechnol. 6, 35-50.
Yamagata K., Sanders L.K., Kaufmann W.E., Yee W., Barnes C.A., Nathans D. and Worley P.F. (1994). Rheb, a growth factor-and synaptic activity-regulated gene, encodes a novel Ras-related protein. J. Biol. Chem. 269, 16333-16339.
Yang W., Tabancay A.P., Urano J. and Tamanoi F. (2001). Failure to farnesylate Rheb protein contributes to the enrichment of G0/G1 phase cells in the Schizosaccharomyces pombe farnesyltransferase mutant. Mol. Microbiol. 41, 1339-1347.
Zheng X., Yang J.F., Wang X.J., Liang Y., Wu M.L., Shi J.J., Zhang T., Yin Q., Li S.Y. and Hao X.Y. (2011). Molecular characterization and expression pattern of Rheb gene in Inner Mongolia Cashmere goat (Capra hircus). Agric. Sci. China. 10, 1452-1458.