Fracture analysis of conical shells containing an internal semi-elliptical crack
Subject Areas :
Analytical and Numerical Methods in Mechanical Design
C. Burvill
1
,
M.M. Kheirikhah
2
*
,
S. Omidi
3
*
,
S. Gohari
4
*
1 - Department of Mechanical Engineering, the University of Melbourne
Parkville, VIC 3010, Australia.
2 - Department of Mechanical Engineering, the University of Melbourne
Parkville, VIC 3010, Australia.
3 - Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University
Qazvin, Iran.
4 - Department of Mechanical Engineering, the University of Melbourne
Parkville, VIC 3010, Australia.
Received: 2022-09-21
Accepted : 2022-09-21
Published : 2022-06-01
Keywords:
Finite Element Method,
Stress intensity factor,
Conical shell,
Semi-Elliptical Crack,
Fracture Analysis,
Abstract :
Conical shells play a significant role in different branches of engineering such as aerospace and oil industries. The purpose of this paper is to analyze the fracture behavior of metallic conical shells containing an internal semi-elliptical crack. An accurate three-dimensional finite element method is employed to model the conical shell using ANSYS standard code. Special singular elements are used to consider the square-root singularity at the semi-elliptical crack front. Stress intensity factors of the cracks which placed in different positions of the shell is calculated. To confirm the accuracy of the present finite element model, both stress distribution of the structure and stress intensity factor of the crack in special case are compared with published results. The effect of different geometrical parameters on the stress intensity factor of the cracks are investigated. Results show that the crack aspect ratio has a significant effect on the stress intensity factor of the cracks.
References:
Diamantoudis, A. T. and Labeas, G. N. (2005) ‘Stress intensity factors of semi-elliptical surface cracks in pressure vessels by global-local finite element methodology’, Engineering Fracture Mechanics, 72(9), pp. 1299–1312. doi: 10.1016/j.engfracmech.2004.10.004.
Moustabchir, H. et al. (2010) ‘Experimental and numerical study of stress-strain state of pressurised cylindrical shells with external defects’, Engineering Failure Analysis. Elsevier Ltd, 17(2), pp. 506–514. doi: 10.1016/j.engfailanal.2009.09.011.
Lin, X. B. and Smith, R. a (1998) ‘Fatigue Growth Prediction of Internal Surface Cracks in Pressure Vessels’, Journal of Pressure Vessel Technology, 120(1), pp. 17–23. doi: 10.1115/1.2841878.
Underwood, J. (1972) ‘STP34113S @ www.astm.org’. In: Stress Analysis and Growth of Cracks: Proceedings of the 1971 National Symposium on Fracture Mechanics: Part 1. ASTM International; 1972. https://doi.org/ 10.1520/STP34113S.
Emery, A. F., Love, W. J. and Kobayashi, A. S. (1976) ‘Elastic Crack Propagation Along a Pressurized Pipe’, Journal of Pressure Vessel Technology, 98(1), pp. 2–7. doi: 10.1115/1.3454320.
Delale, F. and F. Erdogan (1984) ‘Application of Line-Spring Model To a Stiffened Cylindrical Shell Containing an Axial Part-Through Crack’, Fracture 84, 49(March 1982), pp. 1037–1044. doi: 10.1016/B978-1-4832-8440-8.50084-3.
Raju, I. S. and Newman, J. C. (1982) ‘Stress-Intensity Factors for Internal and External Surface Cracks in Cylindrical Vessels’, Journal of Pressure Vessel Technology, 104(4), p. 293. doi: 10.1115/1.3264220.
Wang X, Lambert SB. (1996) 'Stress intensity factors and weight functions for longitudinal semi-elliptical surface cracks in thin pipes', Int J Press Vessel Pip. 65(1):75–87. https://doi.org/10.1016/0308-0161(94)00160-K.
Bergman, M. (1995) ‘Stress Intensity Factors for Circumferential Surface Cracks in Pipes’, Fatigue & Fracture of Engineering Materials & Structures, 18(10), pp. 1155–1172. doi: 10.1111/j.1460-2695.1995.tb00845.x.
Carpinteri, A. (1993) ‘Shape change of surface cracks in round bars under cyclic axial loading’, International Journal of Fatigue, 15(1), pp. 21–26. doi: 10.1016/0142-1123(93)90072-X.
Shin, C. S. and Cai, C. Q. (2004) ‘Experimental and finite element analyses on stress intensity factors of an elliptical surface crack in a circular shaft under tension and bending’, International Journal of Fracture, 129(3), pp. 239–264. doi: 10.1023/B:FRAC.0000047784.23236.7d.
Shahani, A. R. and Habibi, S. E. (2007) ‘Stress intensity factors in a hollow cylinder containing a circumferential semi-elliptical crack subjected to combined loading’, International Journal of Fatigue, 29(1), pp. 128–140. doi: 10.1016/j.ijfatigue.2006.01.017.
Shahani, A. R. and Kheirikhah, M. M. (2007) ‘Stress intensity factor calculation of steel-lined hoop-wrapped cylinders with internal semi-elliptical circumferential crack’, Engineering Fracture Mechanics, 74(13), pp. 2004–2013. doi: 10.1016/j.engfracmech.2006.10.014.
Nabavi, S. M. and Shahani, A. R. (2009) ‘Thermal stress intensity factors for a cracked cylinder under transient thermal loading’, International Journal of Pressure Vessels and Piping. Elsevier Ltd, 86(2–3), pp. 153–163. doi: 10.1016/j.ijpvp.2008.11.024.
El Hakimi, A., Le Grognec, P. and Hariri, S. (2008) ‘Numerical and analytical study of severity of cracks in cylindrical afile:///media/saber/Saber’s%20volume/P/New%20folder/2019/references nd spherical shells’, Engineering Fracture Mechanics, 75(5), pp. 1027–1044. doi: 10.1016/j.engfracmech.2007.04.027.
Meshii, T., Tanaka, T. and Lu, K. (2010) ‘T-Stress solutions for a semi-elliptical axial surface crack in a cylinder subjected to mode-I non-uniform stress distributions’, Engineering Fracture Mechanics. Elsevier Ltd, 77(13), pp. 2467–2478. doi: 10.1016/j.engfracmech.2010.06.007.
Wen, J. F. et al. (2011) ‘Creep fracture mechanics parameters for internal axial surface cracks in pressurized cylinders and creep crack growth analysis’, International Journal of Pressure Vessels and Piping. Elsevier Ltd, 88(11–12), pp. 452–464. doi: 10.1016/j.ijpvp.2011.08.005.
Predan, J., Močilnik, V. and Gubeljak, N. (2013) ‘Stress intensity factors for circumferential semi-elliptical surface cracks in a hollow cylinder subjected to pure torsion’, Engineering Fracture Mechanics, 105, pp. 152–168. doi: 10.1016/j.engfracmech.2013.03.033.
Yang ST, Ni YL, Li CQ. (2013) 'Weight function method to determine stress intensity factor for semi-elliptical crack with high aspect ratio in cylindrical vessels', Eng Fract Mech. 109: 138–49. https://doi.org/10.1016/j.engfracmech.2013.05.014.
Okada, H. et al. (2016) ‘Computations of stress intensity factors for semi-elliptical cracks with high aspect ratios by using the tetrahedral finite element (fully automated parametric study)’, Engineering Fracture Mechanics. Elsevier Ltd, 158, pp. 144–166. doi: 10.1016/j.engfracmech.2016.02.049.
Zareei, A. and Nabavi, S. M. (2016) ‘Calculation of stress intensity factors for circumferential semi-elliptical cracks with high aspect ratio in pipes’, International Journal of Pressure Vessels and Piping. Elsevier Ltd, 146, pp. 32–38. doi: 10.1016/j.ijpvp.2016.05.008.
Shariati, M., Mohammadi, E. and Masoudi Nejad, R. (2017) ‘Effect of a new specimen size on fatigue crack growth behavior in thick-walled pressure vessels’, International Journal of Pressure Vessels and Piping. Elsevier Ltd, 150, pp. 1–10. doi: 10.1016/j.ijpvp.2016.12.009.
Aliha, M. R. M. and Gharehbaghi, H. (2017) ‘The effect of combined mechanical load/welding residual stress on mixed mode fracture parameters of a thin aluminum cracked cylinder’, Engineering Fracture Mechanics. Elsevier Ltd, 180, pp. 213–228. doi: 10.1016/j.engfracmech.2017.05.003.
Alizadeh Kaklar, J. and Saeidi Googarchin, H. (2018) ‘Approximate stress intensity factors for a semi-circular crack in an arbitrary structure under arbitrary mode I loading’, Theoretical and Applied Fracture Mechanics. Elsevier Ltd, 94, pp. 71–83. doi: 10.1016/j.tafmec.2018.01.007.
Ramezani, M. K. et al. (2018) ‘Empirical solutions for stress intensity factors of a surface crack in a solid cylinder under pure torsion’, Engineering Fracture Mechanics. Elsevier, 193(June 2017), pp. 122–136. doi: 10.1016/j.engfracmech.2018.02.015.
Shlyannikov, V. N., Yarullin, R. R. and Ishtyryakov, I. S. (2018) ‘Effect of temperature on the growth of fatigue surface cracks in aluminum alloys’, Theoretical and Applied Fracture Mechanics. Elsevier Ltd, 96, pp. 758–767. doi: 10.1016/j.tafmec.2017.11.003.
Kheirikhah, M. M. and Khalili, S. M. R. (2011) ‘Fracture analysis of semielliptical cracks at the interface of two functionally gradient materials using three-dimensional finite-element method’, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 225(2), pp. 49–59. doi: 10.1177/1464420710397640.
Nami, M. R. and Eskandari, H. (2012) ‘Three-dimensional investigations of stress intensity factors in a thermo-mechanically loaded cracked FGM hollow cylinder’, International Journal of Pressure Vessels and Piping. Elsevier Ltd, 89, pp. 222–229. doi: 10.1016/j.ijpvp.2011.11.004.
Seifi, R. (2015) ‘Stress intensity factors for internal surface cracks in autofrettaged functionally graded thick cylinders using weight function method’, Theoretical and Applied Fracture Mechanics. Elsevier Ltd, 75, pp. 113–123. doi: 10.1016/j.tafmec.2014.11.004.
Farahpour, P., Babaghasabha, V. and Khadem, M. (2015) ‘Stress intensity factor calculation for semi-elliptical cracks on functionally graded material coated cylinders’, Structural Engineering and Mechanics, 55(6), pp. 1087–1097. doi: 10.12989/sem.2015.55.6.1087.
Chen, J. and Pan, H. (2013) ‘Stress intensity factor of semi-elliptical surface crack in a cylinder with hoop wrapped composite layer’, International Journal of Pressure Vessels and Piping. Elsevier Ltd, 110, pp. 77–81. doi: 10.1016/j.ijpvp.2013.04.026.
Eskandari, H. (2016) ‘Stress intensity factor of semi-elliptical surface crack in a thermo-mechanically loaded cylinder with hoop wrapped FGM layer’, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 38(8), pp. 2563–2570. doi: 10.1007/s40430-016-0495-9.
Eskandari, H. (2018) ‘Three-dimensional investigation of cracked tubes coated with functionally graded material under shock loading’, Journal of the Brazilian Society of Mechanical Sciences and Engineering. Springer Berlin Heidelberg, 40(9), pp. 1–9. doi: 10.1007/s40430-018-1352-9.
Murtaza, U.T., Heydar, M. J. (2017) ‘Stress intensity factors of corner cracks at set-in nozzle–cylinder intersection of a PWR reactor pressure vessel’, J Brazilian Soc Mech Sci Eng.,39(2): 601–11. https://doi.org/10.1007/s40430-016-0522-x..
Wang, L. et al. (2017) ‘Finite-Element Analysis of Crack Arrest Properties of Fiber Reinforced Composites Application in Semi-Elliptical Cracked Pipelines’, Applied Composite Materials. Applied Composite Materials. doi: 10.1007/s10443-017-9621-9.
Rekbi, F. M. L., Hecini, M. and Khechai, A. (2018) ‘Experimental and numerical analysis of mode-I interlaminar fracture of composite pipes’, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(10), p. 502. doi: 10.1007/s40430-018-1423-y.
Ugural, A. (2009) Stresses in beams, plates, and shells. CRC press; 2009. https://doi.org/10.1201/b17516.
Barsoum, R. S. (1976) ‘On the use of isoparametric finite elements in linear fracture mechanics’, International Journal for Numerical Methods in Engineering, 10(1), pp. 25–37. doi: 10.1002/nme.1620100103.