A review on pharmacological potentials of phenolic diterpenes carnosic acid and carnosol obtained from Rosmarinus officinalis L. and modern extraction methods implicated in their recovery
Subject Areas : Essential Oils: Classical and Advanced Techniques for Isolation and Biological ActivitiesDhananjay Singh 1 , Nishu Mittal 2 , Mohammed Siddiqui 3
1 - Department of Biosciences, Integral University, Kursi Road, Lucknow, Uttar Pradesh-226026, India
2 - Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh-225003, India
3 - Department of Bioengineering, Integral University, Kursi Road, Lucknow, Uttar Pradesh-226026, India
Keywords: Secondary metabolites, Carnosol, Bioactivities, Biological activity, <i>Rosmarinus officinalis</i> L, Carnosic acid, lamiaceae,
Abstract :
Rosmarinus officinalis L. is a perennial herb, known for culinary as well as medicinal properties. It has been shown that bioactive compounds like rosmarinic acid, carnosic acid, and carnosol are responsible for the medicinal properties of this plant species. Carnosic acid is a phenolic diterpene synthesized in young leaves of rosemary, whereas carnosol is produced after the oxidation of carnosic acid. Several studies have confirmed their antiangiogenic, anti-inflammatory, antimicrobial, antidiabetic, antioxidant, antitumor, neuroprotective, and gastroprotective properties. Ethanol, a mixture of ethanol-acetone, and hexane have been recommended as the best solvents for the extraction of carnosic acid, but advanced extraction techniques such as microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE), pressurized liquid extraction (PLE), supercritical fluid extraction (SFE), etc. have been used to extract these phenolic antioxidant compounds in higher yield. This report is a kind of first study that emphasizes the recent research on the pharmacological potentials of carnosic acid and carnosol and summarizes the studies on modern extraction procedures.
Afshar, M., Najafian, S., Radi, M., 2022a. The effect of harvest time on the natural product of Rosmarinus officinalis L. from South Iran (Fars Province). Nat. Prod. Res. 36(10), 2637-2642.
Afshar, M., Najafian, S., Radi, M., 2022b. Seasonal variation on the major bioactive compounds: Total phenolic and flavonoids contents, and antioxidant activity of rosemary from Shiraz. Nat. Prod. Res. 36(16), 4287-4292.
Ali, A., Chua, B.L., Chow, Y.H., 2019. An insight into the extraction and fractionation technologies of the essential oils and bioactive compounds in Rosmarinus officinalis L.: Past, present and future. Trends Anal. Chem. 118, 338-351.
AlKahtane, A.A., Ghanem, E., Bungau, S.G., Alarifi, S., Ali, D., AlBasher, G., Alkahtani, S., Aleya, L., Abdel-Daim, M.M., 2020. Carnosic acid alleviates chlorpyrifos-induced oxidative stress and inflammation in mice cerebral and ocular tissues. Environ. Sci. Pollut. Res. 27(11), 11663-11670.
Alshahrani, M.Y., Rafi, Z., Alabdallah, N.M., Shoaib, A., Ahmad, I., Asiri, M., Zaman, G.S., Wahab, S., Saeed, M., Khan, S., 2021. A comparative antibacterial, antioxidant, and antineoplastic potential of Rauwolfia serpentina (L.) leaf extract with its biologically synthesized gold nanoparticles (R-AuNPs). Plants 10(11), 2278.
Anacarso, I., Sabia, C., de Niederhäusern, S., Iseppi, R., Condò, C., Bondi, M., Messi, P., 2019. In vitro evaluation of the amoebicidal activity of rosemary (Rosmarinus officinalis L.) and cloves (Syzygium aromaticum L. Merr. & Perry) essential oils against Acanthamoeba polyphaga trophozoites. Nat. Prod. Res. 33(4), 606-611.
Andrade, J.M., Faustino, C., Garcia, C., Ladeiras, D., Reis, C.P., Rijo, P., 2018. Rosmarinus officinalis L.: An update review of its phytochemistry and biological activity. Future Sci. OA 4(4), Fso283.
Argüelles, A., Sánchez-Fresneda, R., Martínez-Mármol, E., Lozano, J.A., Solano, F., Argüelles, J.C., 2021. A specific mixture of propolis and carnosic acid triggers a strong fungicidal action against Cryptococcus neoformans. Antibiotics (Basel) 10(11), doi: org/10.3390/antibiotics10111395.
Arranz, E., Mes, J., Wichers, H.J., Jaime, L., Mendiola, J.A., Reglero, G., Santoyo, S., 2015. Anti-inflammatory activity of the basolateral fraction of Caco-2 cells exposed to a rosemary supercritical extract. J. Funct. Foods 13, 384-390.
Aziz, E., Batool, R., Akhtar, W., Shahzad, T., Malik, A., Shah, M.A., Iqbal, S., Rauf, A., Zengin, G., Bouyahya, A., Rebezov, M., Dutta, N., Khan, M.U., Khayrullin, M., Babaeva, M., Goncharov, A., Shariati, M.A., Thiruvengadam, M., 2022. Rosemary species: A review of phytochemicals, bioactivities and industrial applications. S. Afr. J. Bot. 151, 3-18.
Azmir, J., Zaidul, I.S.M., Rahman, M.M., Sharif, K.M., Mohamed, A., Sahena, F., Jahurul, M.H.A., Ghafoor, K., Norulaini, N.A.N., Omar, A.K.M., 2013. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 117(4), 426-436.
Azwanida, N.N., 2015. A review on the extraction methods use in medicinal plants, principle, strength and limitation. Med. Aromat. Plants 4, 1-6.
Bai, N., He, K., Roller, M., Lai, C.S., Shao, X., Pan, M.H., Ho, C.T., 2010. Flavonoids and phenolic compounds from Rosmarinus officinalis. J. Agric. Food Chem. 58(9), 5363-5367.
Bakirel, T., Bakirel, U., Keleş, O.U., Ulgen, S.G., Yardibi, H., 2008. In vivo assessment of antidiabetic and antioxidant activities of rosemary (Rosmarinus officinalis) in alloxan-diabetic rabbits. J. Ethnopharmacol. 116(1), 64-73.
Barni, M.V., Carlini, M.J., Cafferata, E.G., Puricelli, L., Moreno, S., 2012. Carnosic acid inhibits the proliferation and migration capacity of human colorectal cancer cells. Oncol. Rep. 27(4), 1041-1048.
Bekut, M., Brkić, S., Kladar, N., Dragović, G., Gavarić, N., Božin, B., 2018. Potential of selected Lamiaceae plants in anti (retro) viral therapy. Pharmacol. Res. 133, 301-314.
Bellumori, M., Innocenti, M., Binello, A., Boffa, L., Mulinacci, N., Cravotto, G., 2016. Selective recovery of rosmarinic and carnosic acids from rosemary leaves under ultrasound-and microwave-assisted extraction procedures. C. R. Chim. 19(6), 699-706.
Benincá, J.P., Dalmarco, J.B., Pizzolatti, M.G., Fröde, T.S., 2011. Analysis of the anti-inflammatory properties of Rosmarinus officinalis L. in mice. Food Chem. 124(2), 468-475.
Birtić, S., Dussort, P., Pierre, F.-X., Bily, A.C., Roller, M., 2015. Carnosic acid. Phytochemistry 115, 9-19.
Boudiar, T., Lozano-Sánchez, J., Harfi, B., del Mar Contreras, M., Segura-Carretero, A., 2019. Phytochemical characterization of bioactive compounds composition of Rosmarinus eriocalyx by RP-HPLC-ESI-QTOF-MS. Nat. Prod. Res. 33(15), 2208-2214.
Boutekedjiret, C., Bentahar, F., Belabbes, R., Bessiere, J.M., 2003. Extraction of rosemary essential oil by steam distillation and hydrodistillation. Flavour Fragrance J. 18(6), 481-484.
Božić, D., Papaefthimiou, D., Brückner, K., De Vos, R.C., Tsoleridis, C.A., Katsarou, D., Papanikolaou, A., Pateraki, I., Chatzopoulou, F.M., Dimitriadou, E., 2015. Towards elucidating carnosic acid biosynthesis in Lamiaceae: Functional characterization of the three first steps of the pathway in Salvia fruticosa and Rosmarinus officinalis. PLoS One 10(5), e0124106.
Bozin, B., Mimica-Dukic, N., Samojlik, I., Jovin, E., 2007. Antimicrobial and antioxidant properties of rosemary and sage (Rosmarinus officinalis L. and Salvia officinalis L., Lamiaceae) essential oils. J. Agric. Food Chem. 55(19), 7879-7885.
Brückner, K., Božić, D., Manzano, D., Papaefthimiou, D., Pateraki, I., Scheler, U., Ferrer, A., de Vos, R.C., Kanellis, A.K., Tissier, A., 2014. Characterization of two genes for the biosynthesis of abietane-type diterpenes in rosemary (Rosmarinus officinalis) glandular trichomes. Phytochemistry 101, 52-64.
Çakılcıoğlu, U., Türkoğlu, İ., 2007. Plants used for hemorrhoid treatment in Elaziğ central district. Acta Hortic. 826, 89-96.
Calvo, M.I., Akerreta, S., Cavero, R.Y., 2011. Pharmaceutical ethnobotany in the riverside of Navarra (Iberian Peninsula). J. Ethnopharmacol. 135(1), 22-33.
Chan, E.W.C., Wong, S.K., Chan, H.T., 2022. An overview of the chemistry and anticancer properties of rosemary extract and its diterpenes. J. HerbMed Pharmacol. 11(1), 10-19.
Chemat, F., Abert-Vian, M., Fabiano-Tixier, A.S., Strube, J., Uhlenbrock, L., Gunjevic, V., Cravotto, G., 2019. Green extraction of natural products. Origins, current status, and future challenges. Trends Anal. Chem. 118, 248-263.
Cheung, S., Tai, J., 2007. Anti-proliferative and antioxidant properties of rosemary Rosmarinus officinalis. Oncol. Rep. 17(6), 1525-1531.
Choi, S.H., Jang, G.W., Choi, S.I., Jung, T.D., Cho, B.Y., Sim, W.S., Han, X., Lee, J.S., Kim, D.Y., Kim, D.B., Lee, O.H., 2019. Development and validation of an analytical method for carnosol, carnosic acid and rosmarinic acid in food matrices and evaluation of the antioxidant activity of rosemary extract as a food additive. Antioxidants (Basel) 8(3).
Conde-Hernández, L.A., Espinosa-Victoria, J.R., Trejo, A.G., Guerrero-Beltrán, J.Á., 2017. CO2-supercritical extraction, hydrodistillation and steam distillation of essential oil of rosemary (Rosmarinus officinalis). J. Food Eng. 200, 81-86.
Crozier, R.W.E., Yousef, M., Coish, J.M., Fajardo, V.A., Tsiani, E., MacNeil, A.J., 2023. Carnosic acid inhibits secretion of allergic inflammatory mediators in IgE-activated mast cells via direct regulation of Syk activation. J. Biol. Chem. 299(4), 102867.
Cushnie, T.P., Lamb, A.J., 2005. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 26(5), 343-356.
de Oliveira, M.R., 2016. The dietary components carnosic acid and carnosol as neuroprotective agents: A mechanistic view. Mol. Neurobiol. 53(9), 6155-6168.
de Oliveira, M.R., de Souza, I.C.C., Fürstenau, C.R., 2018. Carnosic acid induces anti-inflammatory effects in paraquat-treated sh-sy5y cells through a mechanism involving a crosstalk between the Nrf2/HO-1 axis and NF-κB. Mol. Neurobiol. 55(1), 890-897.
de Oliveira, M.R., Peres, A., Ferreira, G.C., Schuck, P.F., Bosco, S.M.D., 2016. Carnosic acid affords mitochondrial protection in chlorpyrifos-treated Sh-Sy5y cells. Neurotoxic. Res. 30, 367-379.
Del Campo, J., Amiot, M.J., Nguyen-The, C., 2000. Antimicrobial effect of rosemary extracts. J. Food Prot. 63(10), 1359-1368.
Donmez, D.B., Kacar, S., Bagci, R., Sahinturk, V., 2020. Protective effect of carnosic acid on acrylamide-induced liver toxicity in rats: Mechanistic approach over Nrf2-Keap1 pathway. J. Biochem. Mol. Toxicol. 34(9), e22524.
Dörrie, J., Sapala, K., Zunino, S.J., 2001. Carnosol-induced apoptosis and downregulation of Bcl-2 in B-lineage leukemia cells. Cancer Lett. 170 1, 33-39.
Dorta, E., Lobo, M.G., González, M., 2013. Optimization of factors affecting extraction of antioxidants from mango seed. Food Bioprocess Technol. 6(4), 1067-1081.
Du, C., Li, Z., Zhang, J., Yin, N., Tang, L., Li, J., Sun, J., Yu, X., Chen, W., Xiao, H., Wu, X., Chen, X., 2023. The protective effect of carnosic acid on dextran sulfate sodium-induced colitis based on metabolomics and gut microbiota analysis. Food Sci. Hum. Wellness 12(4), 1212-1223.
Fatima, F., Siddiqui, S., Khan, W.A., 2021. Nanoparticles as novel emerging therapeutic antibacterial agents in the antibiotics resistant era. Biol. Trace Elem. Res. 199(7), 2552-2564.
Ghasemzadeh Rahbardar, M., Hemadeh, B., Razavi, B.M., Eisvand, F., Hosseinzadeh, H., 2022. Effect of carnosic acid on acrylamide induced neurotoxicity: In vivo and in vitro experiments. Drug Chem. Toxicol. 45(4), 1528-1535.
González-Vallinas, M., Molina, S., Vicente, G., de la Cueva, A., Vargas, T., Santoyo, S., García-Risco, M.R., Fornari, T., Reglero, G., Ramírez de Molina, A., 2013. Antitumor effect of 5-fluorouracil is enhanced by rosemary extract in both drug sensitive and resistant colon cancer cells. Pharmacol. Res. 72, 61-68.
González-Vallinas, M., Reglero, G., Ramírez de Molina, A., 2015. Rosemary (Rosmarinus officinalis L.) extract as a potential complementary agent in anticancer therapy. Nutr. Cancer 67(8), 1221-1229.
Guellouma, F.Z., Boussoussa, H., Khachba, I., Yousfi, M., Ziane Khoudja, I., Bourahla, I., 2023. Rosmarinus officinalis essential oils’ eradication of beta-lactamase and multidrug resistant clinical bacterial pathogens from hospital settings. Nat. Prod. Res. 1-11, doi: org/10.1080/14786419.2023.2201884.
Hadi Soltanabad, M., Bagherieh-Najjar, M.B., Mianabadi, M., 2020. Carnosic acid content increased by silver nanoparticle treatment in rosemary (Rosmarinus officinalis L.). Appl. Biochem. Biotechnol. 191(2), 482-495.
Halmschlag, C.B., Carneiro de Melo Moura, C., Brambach, F., Siregar, I.Z., Gailing, O., 2022. Molecular and morphological survey of Lamiaceae species in converted landscapes in Sumatra. PLoS One 17(12), e0277749.
Harley, R.M., 2012. Checklist and key of genera and species of the Lamiaceae of the Brazilian Amazon. Rodriguésia 63, 129-144.
Hasei, S., Yamamotoya, T., Nakatsu, Y., Ohata, Y., Itoga, S., Nonaka, Y., Matsunaga, Y., Sakoda, H., Fujishiro, M., Kushiyama, A., Asano, T., 2021. Carnosic acid and carnosol activate ampk, suppress expressions of gluconeogenic and lipogenic genes, and inhibit proliferation of HepG2 cells. Int. J. Mol. Sci. 22(8), 4040.
Hashemi-Moghaddam, H., Mohammadhosseini, M., Azizi, Z., 2018. Impact of amine- and phenyl-functionalized magnetic nanoparticles impacts on microwave-assisted extraction of essential oils from root of Berberis integerrima Bunge. J. Appl. Res. Med. Aromat. Plants 10, 1-8.
Hashemi-Moghaddam, H., Mohammadhosseini, M., Basiri, M., 2015. Optimization of microwave assisted hydrodistillation on chemical compositions of the essential oils from the aerial parts of Thymus pubescens and comparison with conventional hydrodistllation. J. Essent. Oil-Bear. Plants 18(4), 884-893.
Hashemi-Moghaddam, H., Mohammadhosseini, M., Salar, M., 2014. Chemical composition of the essential oils from the hulls of Pistacia vera L. by using magnetic nanoparticle-assisted microwave (MW) distillation: Comparison with routine MW and conventional hydrodistillation. Anal. Methods 6, 2572-2579.
Hernández, M.D., Sotomayor, J.A., Hernández, Á., Jordán, M.J., 2016. Chapter 77-Rosemary (Rosmarinus officinalis L.) Oils, in: Preedy, V.R. (Ed.), Essential oils in Food Preservation, Flavor and Safety. Academic Press, San Diego, pp. 677-688.
Herrero, M., Plaza, M., Cifuentes, A., Ibáñez, E., 2010. Green processes for the extraction of bioactives from Rosemary: Chemical and functional characterization via ultra-performance liquid chromatography-tandem mass spectrometry and in-vitro assays. J. Chromatogr. A 1217(16), 2512-2520.
Hill, R.A., Connolly, J.D., 2013. Triterpenoids. Nat. Prod. Rep. 30(7), 1028-1065.
Hirondart, M., Rombaut, N., Fabiano-Tixier, A.S., Bily, A., Chemat, F., 2020. Comparison between pressurized liquid extraction and conventional soxhlet extraction for rosemary antioxidants, yield, composition, and environmental footprint. Foods 9(5), 584.
Hosokawa, I., Hosokawa, Y., Ozaki, K., Matsuo, T., 2020. Carnosic acid inhibits inflammatory cytokines production in human periodontal ligament cells. Immunopharmacol. Immunotoxicol. 42(4), 373-378.
Hossain, M.B., Barry-Ryan, C., Martin-Diana, A.B., Brunton, N.P., 2011. Optimisation of accelerated solvent extraction of antioxidant compounds from rosemary (Rosmarinus officinalis L.), marjoram (Origanum majorana L.) and oregano (Origanum vulgare L.) using response surface methodology. Food Chem. 126(1), 339-346.
Hou, C.-W., Lin, Y.-T., Chen, Y.-L., Wang, Y.-H., Chou, J.-L., Ping, L.-Y., Jeng, K.-C., 2012. Neuroprotective effects of carnosic acid on neuronal cells under ischemic and hypoxic stress. Nutr. Neurosci. 15(6), 257-263.
Huang, M.T., Ho, C.T., Wang, Z.Y., Ferraro, T., Lou, Y.R., Stauber, K., Ma, W., Georgiadis, C., Laskin, J.D., Conney, A.H., 1994. Inhibition of skin tumorigenesis by rosemary and its constituents carnosol and ursolic acid. Cancer Res. 54(3), 701-708.
Iseppi, R., Sabia, C., de Niederhäusern, S., Pellati, F., Benvenuti, S., Tardugno, R., Bondi, M., Messi, P., 2019. Antibacterial activity of Rosmarinus officinalis L. and Thymus vulgaris L. essential oils and their combination against food-borne pathogens and spoilage bacteria in ready-to-eat vegetables. Nat. Prod. Res. 33(24), 3568-3572.
Jesus, E.G.d., Souza, F.F.d., Andrade, J.V., Andrade e Silva, M.L., Cunha, W.R., Ramos, R.C., Campos, O.S., Santos, J.A.N., Santos, M.F.C., 2023. In silico and in vitro elastase inhibition assessment assays of rosmarinic acid natural product from Rosmarinus officinalis Linn. Nat. Prod. Res. 1-6, doi: org/10.1080/14786419.2023.2196077.
Kar, S., Palit, S., Ball, W.B., Das, P.K., 2012. Carnosic acid modulates Akt/IKK/NF-κB signaling by PP2A and induces intrinsic and extrinsic pathway mediated apoptosis in human prostate carcinoma PC-3 cells. Apoptosis 17(7), 735-747.
Karagianni, K., Pettas, S., Kanata, E., Lioulia, E., Thune, K., Schmitz, M., Tsamesidis, I., Lymperaki, E., Xanthopoulos, K., Sklaviadis, T., Dafou, D., 2022. Carnosic acid and carnosol display antioxidant and anti-prion properties in in vitro and cell-free models of prion diseases. Antioxidants 11(4), 726.
Lefebvre, T., Destandau, E., Lesellier, E., 2021. Selective extraction of bioactive compounds from plants using recent extraction techniques: A review. J. Chromatogr. A. 1635, 461770.
Lešnik, S., Furlan, V., Bren, U., 2021. Rosemary (Rosmarinus officinalis L.): extraction techniques, analytical methods and health-promoting biological effects. Phytochem. Rev. 1-56.
Lin, G., Li, N., Li, D., Chen, L., Deng, H., Wang, S., Tang, J., Ouyang, W., 2023. Carnosic acid inhibits NLRP3 inflammasome activation by targeting both priming and assembly steps. Int. Immunopharmacol. 116, 109819.
Lo Presti, M., Ragusa, S., Trozzi, A., Dugo, P., Visinoni, F., Fazio, A., Dugo, G., Mondello, L., 2005. A comparison between different techniques for the isolation of rosemary essential oil. J. Sep. Sci. 28(3), 273-280.
Lo, A.H., Liang, Y.C., Lin-Shiau, S.Y., Ho, C.T., Lin, J.K., 2002. Carnosol, an antioxidant in rosemary, suppresses inducible nitric oxide synthase through down-regulating nuclear factor-kappaB in mouse macrophages. Carcinogenesis 23(6), 983-991.
Lopes, R.P., Parreira, L.A., Venancio, A.N., Santos, M.F.C., Menini, L., 2023. Chemical characterization and evaluation of acaricidal potential of rosemary essential oil and its main compound α-pinene on the two-spotted spider mite, Tetranychus urticae. Nat. Prod. Res. 37(17), 2940-2944.
Loussouarn, M., Krieger-Liszkay, A., Svilar, L., Bily, A., Birtić, S., Havaux, M., 2017. Carnosic acid and carnosol, two major antioxidants of rosemary, act through different mechanisms. Plant Physiol. 175(3), 1381-1394
Medini, H., Manongiu, B., Aicha, N., Chekir-Ghedira, L., Harzalla-Skhiri, F., Khouja, M.L., 2013. Chemical and antibacterial polymorphism of Juniperus oxycedrus ssp. oxycedrus and Juniperus oxycedrus ssp. macrocarpa (Cupressaceae) leaf essential oils from Tunisia. J. Chem. 2013, 389252.
Mirza, F.J., Zahid, S., Holsinger, R.M.D., 2023. Neuroprotective effects of carnosic acid: Insight into its mechanisms of action. Molecules 28(5), 2306.
Mohammadhosseini, M., 2017. Essential oils extracted using microwave-assisted hydrodistillation from aerial parts of eleven Artemisia species: Chemical compositions and diversities in different geographical regions of Iran. Rec. Nat. Prod. 11(2), 114-129.
Moradi, S., Fazlali, A., Hamedi, H., 2018. Microwave-assisted hydro-distillation of essential oil from rosemary: Comparison with traditional distillation. Avicenna J. Med. Biotechnol. 10(1), 22-28.
Moreno, S., Scheyer, T., Romano, C.S., Vojnov, A.A., 2006. Antioxidant and antimicrobial activities of rosemary extracts linked to their polyphenol composition. Free Radic. Res. 40(2), 223-231.
Nakagawa, S., Hillebrand, G.G., Nunez, G., 2020. Rosmarinus officinalis L. (rosemary) extracts containing carnosic acid and carnosol are potent quorum sensing inhibitors of Staphylococcus aureus virulence. Antibiotics 9(4), 149.
Oliveira Gde, A., de Oliveira, A.E., da Conceição, E.C., Leles, M.I., 2016. Multiresponse optimization of an extraction procedure of carnosol and rosmarinic and carnosic acids from rosemary. Food Chem. 211, 465-473.
Oreopoulou, A., Choulitoudi, E., Tsimogiannis, D., Oreopoulou, V., 2021. Six common herbs with distinctive bioactive, antioxidant components. A review of their separation techniques. Molecules 26(10), 2920.
Oualdi, I., Diass, K., Azizi, S.-e., Dalli, M., Touzani, R., Gseyra, N., Yousfi, E.B., 2023. Rosmarinus officinalis essential oils from Morocco: New advances on extraction, GC/MS analysis, and antioxidant activity. Nat. Prod. Res. 37(12), 2003-2008.
Paloukopoulou, C., Karioti, A., 2022. A validated method for the determination of carnosic acid and carnosol in the fresh foliage of Salvia rosmarinus and Salvia officinalis from Greece. Plants 11(22), 3106.
Paniwnyk, L., Cai, H., Albu, S., Mason, T.J., Cole, R., 2009. The enhancement and scale up of the extraction of anti-oxidants from Rosmarinus officinalis using ultrasound. Ultrason. Sonochem. 16(2), 287-292.
Pérez-Fons, L., Garzón, M.T., Micol, V., 2010. Relationship between the antioxidant capacity and effect of rosemary (Rosmarinus officinalis L.) polyphenols on membrane phospholipid order. J. Agric. Food Chem. 58(1), 161-171.
Pieracci, Y., Ciccarelli, D., Giovanelli, S., Pistelli, L., Flamini, G., Cervelli, C., Mancianti, F., Nardoni, S., Bertelloni, F., Ebani, V.V., 2021. Antimicrobial activity and composition of five Rosmarinus (Now Salvia spp. and varieties) essential oils. Antibiotics (Basel) 10(9), doi: org/10.3390%2Fantibiotics10091090.
Pizani, R.S., Viganó, J., de Souza Mesquita, L.M., Contieri, L.S., Sanches, V.L., Chaves, J.O., Souza, M.C., da Silva, L.C., Rostagno, M.A., 2022. Beyond aroma: A review on advanced extraction processes from rosemary (Rosmarinus officinalis) and sage (Salvia officinalis) to produce phenolic acids and diterpenes. Trends Food Sci. Technol. 127, 245-262.
Poeckel, D., Greiner, C., Verhoff, M., Rau, O., Tausch, L., Hörnig, C., Steinhilber, D., Schubert-Zsilavecz, M., Werz, O., 2008. Carnosic acid and carnosol potently inhibit human 5-lipoxygenase and suppress pro-inflammatory responses of stimulated human polymorphonuclear leukocytes. Biochem. Pharmacol. 76(1), 91-97.
Pontillo, A.R.N., Papakosta-Tsigkri, L., Lymperopoulou, T., Mamma, D., Kekos, D., Detsi, A., 2021. Conventional and enzyme-assisted extraction of rosemary leaves (Rosmarinus officinalis L.): Toward a greener approach to high added-value extracts. Appl. Sci. 11(8), 3724.
Ramos da Silva, L.R., Ferreira, O.O., Cruz, J.N., de Jesus Pereira Franco, C., Oliveira Dos Anjos, T., Cascaes, M.M., Almeida da Costa, W., Helena de Aguiar Andrade, E., Santana de Oliveira, M., 2021. Lamiaceae essential oils, phytochemical profile, antioxidant, and biological activities. Evid. Based Complement. Alternat. Med. 2021, 6748052.
Rasul, M.G., 2018. Conventional extraction methods use in medicinal plants, their advantages and disadvantages. Int. J. Basic Sci. Appl. Comput. 2, 10-14.
Razavi, B.M., Abazari, A.R., Rameshrad, M., Hosseinzadeh, H., 2020. Carnosic acid prevented olanzapine-induced metabolic disorders through AMPK activation. Mol. Biol. Rep. 47(10), 7583-7592.
Richheimer, S.L., Bernart, M.W., King, G.A., Kent, M.C., Beiley, D.T., 1996. Antioxidant activity of lipid-soluble phenolic diterpenes from rosemary. J. Am. Oil Chem. Soc. 73, 507-514.
Sánchez-Camargo, A.d.P., Valdés, A., Sullini, G., García-Cañas, V., Cifuentes, A., Ibáñez, E., Herrero, M., 2014. Two-step sequential supercritical fluid extracts from rosemary with enhanced anti-proliferative activity. J. Funct. Foods 11, 293-303.
Santomauro, F., Sacco, C., Donato, R., Bellumori, M., Innocenti, M., Mulinacci, N., 2018. The antimicrobial effects of three phenolic extracts from Rosmarinus officinalis L., Vitis vinifera L. and Polygonum cuspidatum L. on food pathogens. Nat. Prod. Res. 32(22), 2639-2645.
Selvamuthukumaran, M., Shi, J., 2017. Recent advances in extraction of antioxidants from plant by-products processing industries. Food Qual. Saf. 1, 61-81.
Singletary, K., MacDonald, C., Wallig, M., 1996. Inhibition by rosemary and carnosol of 7,12-dimethylbenz[a]anthracene (DMBA)-induced rat mammary tumorigenesis and in vivo DMBA-DNA adduct formation. Cancer Lett. 104(1), 43-48.
Song, H.-M., Li, X., Liu, Y.-Y., Lu, W.-P., Cui, Z.-H., Zhou, L., Yao, D., Zhang, H.-M., 2018. Carnosic acid protects mice from high-fat diet-induced NAFLD by regulating MARCKS. Int. J. Mol. Med. 42(1), 193-207.
Sui, X., Liu, T., Ma, C., Yang, L., Zu, Y., Zhang, L., Wang, H., 2012. Microwave irradiation to pretreat rosemary (Rosmarinus officinalis L.) for maintaining antioxidant content during storage and to extract essential oil simultaneously. Food Chem. 131(4), 1399-1405.
Tai, J., Cheung, S., Wu, M., Hasman, D., 2012. Antiproliferation effect of rosemary (Rosmarinus officinalis) on human ovarian cancer cells in vitro. Phytomedicine 19(5), 436-443.
Takaki, I., Bersani-Amado, L.E., Vendruscolo, A., Sartoretto, S.M., Diniz, S.P., Bersani-Amado, C.A., Cuman, R.K., 2008. Anti-inflammatory and antinociceptive effects of Rosmarinus officinalis L. essential oil in experimental animal models. J. Med. Food 11(4), 741-746.
Tarasevičienė, Ž., Vitkauskaitė, M., Paulauskienė, A., Černiauskienė, J., 2023. Wild stinging nettle (Urtica dioica L.) leaves and roots chemical composition and phenols extraction. Plants 12(2), 309.
Theoduloz, C., Pertino, M.W., Rodríguez, J.A., Schmeda-Hirschmann, G., 2011. Gastroprotective effect and cytotoxicity of carnosic acid derivatives. Planta Med. 77(9), 882-887.
Tsai, C.W., Lin, C.Y., Wang, Y.J., 2011. Carnosic acid induces the NAD(P)H: quinone oxidoreductase 1 expression in rat clone 9 cells through the p38/nuclear factor erythroid-2 related factor 2 pathway. J. Nutr. 141(12), 2119-2125.
Tsai, Y.-F., Yang, S.-C., Hsu, Y.-H., Chen, C.-Y., Chen, P.-J., Syu, Y.-T., Lin, C.-H., Hwang, T.-L., 2023. Carnosic acid inhibits reactive oxygen species-dependent neutrophil extracellular trap formation and ameliorates acute respiratory distress syndrome. Life Sci. 321, 121334.
Tudu, C.K., Dutta, T., Ghorai, M., Biswas, P., Samanta, D., Oleksak, P., Jha, N.K., Kumar, M., Radha, Proćków, J., Pérez de la Lastra, J.M., Dey, A., 2022. Traditional uses, phytochemistry, pharmacology and toxicology of garlic (Allium sativum), a storehouse of diverse phytochemicals: A review of research from the last decade focusing on health and nutritional implications. Front. Nutr. 9, doi: org/10.3389/fnut.2022.929554.
Vázquez, E., García-Risco, M.R., Jaime, L., Reglero, G., Fornari, T., 2013. Simultaneous extraction of rosemary and spinach leaves and its effect on the antioxidant activity of products. J. Supercrit. Fluids 82, 138-145.
Vázquez, N.M., Fiorilli, G., Cáceres Guido, P.A., Moreno, S., 2016. Carnosic acid acts synergistically with gentamicin in killing methicillin-resistant Staphylococcus aureus clinical isolates. Phytomedicine 23(12), 1337-1343.
Vieira, C., Rebocho, S., Craveiro, R., Paiva, A., Duarte, A.R.C., 2022. Selective extraction and stabilization of bioactive compounds from rosemary leaves using a biphasic NADES. Front. Chem. 10, doi: org/10.3389/fchem.2022.954835.
Visentín, A., Cismondi, M., Maestri, D., 2011. Supercritical CO2 fractionation of rosemary ethanolic oleoresins as a method to improve carnosic acid recovery. Innov. Food Sci. Emerg. Technol. 12(2), 142-145.
Wang, H., Wang, J., Liu, Y., Ji, Y., Guo, Y., Zhao, J., 2019. Interaction mechanism of carnosic acid against glycosidase (α-amylase and α-glucosidase). Int. J. Biol. Macromol. 138, 846-853.
Wang, L.-C., Wei, W.-H., Zhang, X.-W., Liu, D., Zeng, K.-W., Tu, P.-F., 2018. An integrated proteomics and bioinformatics approach reveals the anti-inflammatory mechanism of carnosic acid. Front. Pharmacol. 9, doi: org/10.3389/fphar.2018.00370.
Wei, P., Zhang, C., Bian, X., Lu, W., 2022. Metabolic engineering of Saccharomyces cerevisiae for heterologous carnosic acid production. Front. Bioeng. Biotechnol. 10, doi: org/10.3389/fbioe.2022.916605.
WFO-2023: Rosmarinus L. Published on the Internet;http://www.worldfloraonline.org/taxon/wfo-4000033499. Accessed on: 29 Jul 2023.
Wu, C.-R., Tsai, C.-W., Chang, S.-W., Lin, C.-Y., Huang, L.-C., 2015. Carnosic acid protects against 6-hydroxydopamine-induced neurotoxicity in in vivo and in vitro model of Parkinson’s disease: Involvement of antioxidative enzymes induction. Chem.-Biol. Interact. 225, 40-46.
Xie, L., Li, Z., Li, H., Sun, J., Liu, X., Tang, J., Lin, X., Xu, L., Zhu, Y., Liu, Z., Wang, T., 2023. Fast quantitative determination of principal phenolic anti-oxidants in rosemary using ultrasound-assisted extraction and chemometrics-enhanced HPLC-DAD method. Food Anal. Methods 16(2), 386-400.
Xie, Z., Zhong, L., Wu, Y., Wan, X., Yang, H., Xu, X., Li, P., 2018. Carnosic acid improves diabetic nephropathy by activating Nrf2/ARE and inhibition of NF-κB pathway. Phytomedicine 47, 161-173.
Yesil-Celiktas, O., Sevimli, C., Bedir, E., Vardar-Sukan, F., 2010. Inhibitory effects of rosemary extracts, carnosic acid and rosmarinic acid on the growth of various human cancer cell lines. Plant Foods Hum. Nutr. 65(2), 158-163.
Younes, M., Aggett, P., Aguilar, F., Crebelli, R., Dusemund, B., Filipič, M., Frutos, M.J., Galtier, P., Gott, D., Gundert-Remy, U., Kuhnle, G.G., Lambré, C., Lillegaard, I.T., Moldeus, P., Mortensen, A., Oskarsson, A., Stankovic, I., Waalkens-Berendsen, I., Woutersen, R.A., Wright, M., Boon, P., Lindtner, O., Tlustos, C., Tard, A., Leblanc, J.C., 2018. Refined exposure assessment of extracts of rosemary (E 392) from its use as food additive. EFSA J. 16(8), e05373.
Yu, M.H., Choi, J.H., Chae, I.G., Im, H.G., Yang, S.A., More, K., Lee, I.S., Lee, J., 2013. Suppression of LPS-induced inflammatory activities by Rosmarinus officinalis L. Food Chem. 136(2), 1047-1054.
Zappalà, A., Vicario, N., Calabrese, G., Turnaturi, R., Pasquinucci, L., Montenegro, L., Spadaro, A., Parenti, R., Parenti, C., 2021. Neuroprotective effects of Rosmarinus officinalis L. extract in oxygen glucose deprivation (OGD)-injured human neural-like cells. Nat. Prod. Res. 35(4), 669-675.
Zhang, Y., Adelakun, T.A., Qu, L., Li, X., Li, J., Han, L., Wang, T., 2014. New terpenoid glycosides obtained from Rosmarinus officinalis L. aerial parts. Fitoterapia 99, 78-85.
Zhu, C., Fan, Y., Bai, X., 2023. A green and effective polyethylene glycols-based microwave-assisted extraction of carnosic and rosmarinic acids from Rosmarinus officinalis leaves. Foods 12(9), 1761.