تأثیر نورد گرم و عملیات حرارتی بر خواص ناهمسانگردی آلیاژ منیزیم LZ71
محورهای موضوعی : عملیات حرارتیمصطفی پهلوانی 1 , جواد مرزبان راد 2 * , عباس بیاتی 3
1 - دانشکده مهندسی خودرو، دانشگاه علم و صنعت ایران،
2 - گروه سازه و بدنه، دانشکده مهندسی خودرو، دانشگاه علم و صنعت ایران
3 - دانشکده مهندسی مکانیک، دانشگاه علم و صنعت ایران
کلید واژه: ناهمسانگردی, آلیاژ منیزیم, نورد گرم, عملیات حرارتی, LZ71,
چکیده مقاله :
در این مقاله مطالعهای بر روی خواص مکانیکی و متالورژیکی آلیاژ LZ71 که یک آلیاژ 2 فازی از منیزیم است پرداخته شد. بعد از تهیه آلیاژ به روش ریختهگری، با استفاده از نورد گرم قطعه حاصله تا ضخامت 2 میلیمتر کاهش ضخامت داده است. سپس به منظور دستیابی به یک ورق با خواص مکانیکی همسانگرد، قطعه حاصل از نورد در دمای 350 درجه سانتیگراد تحت عملیات حرارتی قرار گرفت. ریزساختار نمونهها به کمک میکروسکوپ نوری مورد بررسی قرار گرفت تا نوع تغییرات در دانه بندی مشاهده شود. در این تحقیق، برای اولین بار خواص ناهمسانگردی ورق تولید شده به روش نورد گرم از جنس آلیاژ LZ71 مورد بررسی قرار گرفته است. بدین منظور خواص مکانیکی هر سه نمونهی بعد از ریختهگری، بعد از نورد و بعد از عملیات حرارتی در سه راستای طولی و عرضی و 45 درجه به طور کامل بررسی شد و همچنین ضرایب ناهمسانگردی نمونههای بعد از نورد مورد محاسبه و بررسی قرار گرفت. مشخص شد که آلیاژ مذکور قبل و بعد از عملیات حرارتی مشخصات مناسب برای کاربردهای سازهای دارد اما ناهمسانگردی در نمونههای بدون عملیات حرارتی وجود داشت. در نهایت سطح شکست برای نمونههای بعد از نورد و بعد از عملیات حرارتی مورد بررسی قرار گرفت تا به نوعی صحهگذاری بر نتایج ناهمسانگردی باشد.
In this paper, a study was carried out on the mechanical and metallurgical properties of magnesium-lithium dual phase alloy. After casting the alloy, the thickness of primary billet is reduced from 10 mm to 2 mm using hot rolling. Then, in order to achieve an isotropic sheet, the rolled part was heat treated at 350 °C. The microstructure of samples were studied using optical microscope to observe the type of grain size variation. In the present survey, anisotropy of hot rolled LZ71 sheet has been studied for the first time. For this purpose, Mechanical properties of all three samples: after casting, after rolling and after heat treatment in three directions of longitudinal and transverse and 45 degrees were completely investigated. Moreover, the anisotropy coefficients of the rolled samples were calculated and evaluated. Results were found that, the alloy had suitable specifications for structural applications before and after heat treatment, but anisotropy was observed in samples without heat treatment. Finally, the failure level for samples after rolling and after heat treatment process was examined to confirm the anisotropy results.
[1] B. L. Mordike & T. Ebert, “Magnesium: Properties — applications — potentialˮ, Materials Science and Engineering: A, Vol. 302, pp. 37-45, 2001.
[2] D. K. Xu, L. Liu, Y. B. Xu & E. H. Han, “The relationship between macro-fracture modes and roles of different deformation mechanisms for the as-extruded Mg–Zn–Zr alloyˮ, Scripta Materialia, Vol. 58, pp. 1098-1101, 2008.
[3] D. K. Xu, B. J. Wang, C. Q. Li, T. T. Zu & E. H. Han, “Effect of icosahedral phase on the thermal stability and ageing response of a duplex structured Mg–Li alloyˮ, Materials & Design, Vol. 69, pp. 124-129, 2015.
[4] D. K. Xu, T. T. Zu, M. Yin, Y. B. Xu & E. H. Han, “Mechanical properties of the icosahedral phase reinforced duplex Mg–Li alloy both at room and elevated temperaturesˮ, Journal of Alloys and Compounds, Vol. 582, pp. 161-166, 2014.
[5] R. Mahmudi, M. Shalbafi, M. Karami & A. R. Geranmayeh, “Effect of Li content on the indentation creep characteristics of cast Mg–Li–Zn alloysˮ, Materials & Design, Vol. 75, pp. 184-190, 2015.
[6] Q. Z. Peng, H. T. Zhou, F. H. Zhong, H. B. Ding, X. Zhou, R. R. Liu & et al., “Effects of homogenization treatment on the microstructure and mechanical properties of Mg–8Li–3Al–Y alloyˮ, Materials & Design, Vol. 66, pp. 566-574, 2015.
[7] D. K. Xu, C. Q. Li, B. J. Wang & E. H. Han, “Effect of icosahedral phase on the crystallographic texture and mechanical anisotropy of duplex structured Mg–Li alloysˮ, Materials & Design, Vol. 88, pp. 88-97, 2015.
[8] T. C. Chang, J. Y. Wang, C. L. Chu& S. Lee, “Mechanical properties and microstructures of various Mg–Li alloysˮ, Materials Letters, Vol. 60, pp. 3272-3276, 2006.
[9] ا. عبداللهزاده، ع. شکوهفر، ح. امیدوار، م. صفرخانیان و م. نادری، "بررسی تاثیر افزودن نانوذرات کاربید سیلیسیم بر خواص مکانیکی آلیاژ منیزیم AZ31 جوشکاری شده به روش اصطکاکی اغتشاشی"، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، سال دهم، شماره چهارم، صفحه 55-71، زمستان 1394.
[10] M. C. Lin, S. Q. Lin & J. Y. Uan, “Effect of annealing temperature on the microstructure and mechanical properties of an as-rolled Mg-9wt.% Li-3wt.% Al-1wt.% Zn alloy sheetˮ, Frontiers of Materials Science, Vol. 8, pp. 271-280, 2014.
[11] H. Dong, F. Pan, B. Jiang & Y. Zeng, “Evolution of microstructure and mechanical properties of a duplex Mg–Li alloy under extrusion with an increasing ratioˮ, Materials & Design, Vol. 57, pp. 121-127, 2014.
[12] H. Y. Wu, J. Y. Lin, Z. W. Gao & H. W. Chen, “Effects of age heat treatment and thermomechanical processing on microstructure and mechanical behavior of LAZ1010 Mg alloyˮ, Materials Science and Engineering: A, Vol. 523, pp. 7-12, 2009.
[13] D. K. Xu, L. Liu, Y. B. Xu & E. H. Han, “The strengthening effect of icosahedral phase on as-extruded Mg–Li alloysˮ, Scripta Materialia, Vol. 57, pp. 285-288, 2007.
[14] Z. Zeng, N. Stanford, C. H. J. Davies, J. F. Nie, & N. Birbilis, “Magnesium extrusion alloys: a review of developments and prospectsˮ, International Materials Reviews, pp. 1-36, 2018.
[15] J. U. Lee, S. W. Song, Y. Kim, S. H. Kim, Y. J. Kim & S. H. Park, “Effects of {10–12} Twins on Dynamic Torsional Properties of Extruded AZ31 Magnesium Alloyˮ, Metals and Materials International, Vol. 24, pp. 283-289, 2018.
[16] Y. Liu, F. Li, X. W. Li & W. Y. Shi, “Properties of Rolled AZ31 Magnesium Alloy Sheet Fabricated by Continuous Variable Cross-Section Direct Extrusionˮ, Journal of Materials Engineering and Performance, Vol. 2, pp. 1334-1342, 2018.
[17] W. Wang, W. Chen, W. Zhang, G. Cui & E. Wang, “Effect of deformation temperature on texture and mechanical properties of ZK60 magnesium alloy sheet rolled by multi-pass lowered-temperature rollingˮ, Materials Science and Engineering: A, Vol. 712, pp. 608-615, 2018.
[18] J. Jiang, J. Wu, S. Ni, H. Yan & M. Song, “Improving the mechanical properties of a ZM61 magnesium alloy by pre-rolling and high strain rate rollingˮ, Materials Science and Engineering: A, Vol. 712, pp. 487-484, 2018.
[19] L. Guo & F. Fujita, “Modeling the microstructure evolution in AZ31 magnesium alloys during hot rollingˮ, Journal of Materials Processing Technology, Vol. 255, pp. 716-723, 2018.
[20] Z. P. Yu, Y. H. Yan, J. Yao, C. Wang, M. Zha, X. Y. Xu & et al., “Effect of tensile direction on mechanical properties and microstructural evolutions of rolled Mg-Al-Zn-Sn magnesium alloy sheets at room and elevated temperaturesˮ, Journal of Alloys and Compounds, Vol. 744, pp. 211-219, 2018.
[21] م. کاویانی و غ. ابراهیمی،"تاثیر پارامترهای ترمومکانیکی بر رفتار بافت آلیاژ منیزیم"، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، سال یازدهم، شماره ی اول، صفحه 111-121، بهار 1394.
[22] M. G. Lee, R. H. Wagoner, J. K. Lee, K. Chung & H. Y. Kim, “Constitutive modeling for anisotropic/asymmetric hardening behavior of magnesium alloy sheetsˮ International Journal of Plasticity, Vol. 24, pp. 545-582, 2008.
[23] J. Kang, D. S. Wilkinson, R. K. Mishra, W. Yuan & R. S. Mishra, “Effect of inhomogeneous deformation on anisotropy of AZ31 magnesium sheetˮ, Materials Science and Engineering: A, Vol. 567, pp. 101-109, 2013.
[24] F. K. Chen & T. B. Huang, “Formability of stamping magnesium-alloy AZ31 sheetsˮ, Journal of Materials Processing Technology, Vol. 142, pp. 643-647, 2003.
[25] W. Tang, S. Huang, D. Li & Y. Peng, “Mechanical anisotropy and deep drawing behaviors of AZ31 magnesium alloy sheets produced by unidirectional and cross rollingˮ, Journal of Materials Processing Technology, Vol. 215, pp. 320-326, 2015.
[26] L. Zhang, G. Huang, H. Zhang & B. Song, “Cold stamping formability of AZ31B magnesium alloy sheet undergoing repeated unidirectional bending processˮ, Journal of Materials Processing Technology, Vol. 211, pp. 644-649, 2011.
[27] L. Delannay, M. A. Melchior, J. W. Signorelli, J. F. Remacle & T. Kuwabara, “Influence of grain shape on the planar anisotropy of rolled steel sheets – evaluation of three modelsˮ, Computational Materials Science, Vol. 45, pp. 739-743, 2009.
[28] H. Yan, R. Chen & E. Han, “Room-temperature ductility and anisotropy of two rolled Mg–Zn–Gd alloysˮ, Materials Science and Engineering: A, Vol. 527, pp. 3317-3322, 2010.
[29] C. Ha, S. Yi, J. Bohlen, X. Zhou, H. G. Brokmeier, N. Schell, D. Letzig & K. U. Kainer, “Deformation and Recrystallization Mechanisms and Their Influence on the Microstructure Development of Rare Earth Containing Magnesium Sheetsˮ, in TMS Annual Meeting & Exhibition, pp. 209-216, 2018.
[30] W. Cheng, L. Wang, H. Zhang & X. Cao, “Enhanced stretch formability of AZ31 magnesium alloy thin sheet by pre-crossed twinning lamellas induced static recrystallizationsˮ, Journal of Materials Processing Technology, Vol. 254, pp. 302-309, 2018.
[31] D. Griffiths, B. Davis & J. Robson, “The Influence of Strain Path on Rare Earth Recrystallization Textures in a Magnesium-Zinc-Rare Earth Alloyˮ, Metallurgical and Materials Transactions A, vol. 49, pp. 321-332, 2018.
_||_