بررسی خواص میکروساختاری و مکانیکی نانوکامپوزیت پایه آلومینیوم تقویت شده با نانوذارت دی سولفید تنگستن
محورهای موضوعی : متالورژی پودرحسین صالحی وزیری 1 * , علی شکوه فر 2 , سید سلمان سید افقهی 3
1 - دانشکده مهندسی و علم مواد دانشگاه خواجه نصیر الدین طوسی
2 - دانشگاه خواجه نصیرالدین طوسی
3 - دانشگاه امام حسین (ع)
کلید واژه: خواص مکانیکی, آلومینیوم, نانوکامپوزیت, نانوذرات, تنگستن دی سولفاید,
چکیده مقاله :
در این تحقیق ابتدا نانو ذارت دی سولفید تنگستن با اندازه کمتر از 100 نانومتر با استفاده از روش هیدرو ترمال سنتز شد. سپس این نانوذارت به عنوان تقویت کننده طی مراحل آلتراسونیک، آسیاکاری و همزدن مکانیکی به پودر آلومینیوم اضافه گردید و نهایتا ساخت نانوکامپوزیت از روش اسپارک پلاسما زینترینگ(SPS) انجام شد. جهت بررسی ریز ساختار نانوکامپوزیت از میکروسکوپ نوری و الکترونی روبشی(FESEM) استفاده شد. این بررسی ها نشان داد که نانوذرات به نحو مطلوبی در زمینه آلومینیوم پخش گردیدهاند و دارای توزیع مناسبی می باشند. حضور نانوذارت در زمینه باعث کاهش اندازه دانه میگردد به طوری که با افزایش میزان نانوذرات اندازه دانهها به کمتر از 20 میکرومتر می رسد. اندازهگیری دانسیته نمونهها نشان داد که نانوکامپوزیت دارای تراکم پذیری بسیار خوبی است و دانسیته نسبی در نمونه با 4 درصد وزنی دی سولفید تنگستن تا 99 درصد رسید. جهت بررسی خواص مکانیکی نانوکامپوزیت از آزمون سختی و تست فشار استفاده گردید و تاثیر افزودن نانوذرات بر این خواص در آلومینیوم بررسی گردید. افزودن نانوذرات دی سولفید تنگستن اثر مستقیمی بر افزایش خواص مکانیکی نانو کامپوزیت دارد بطوریکه باعث افزایش استحکام تسلیم فشاری تا 120 مگاپاسکال، حدود دو برابر فلز پایه، میگردد و سختی تا 30 درصد افزایش می یابد.
In this research, WS2 nanoparticles were synthesized using hydrothermal method and then added to aluminum matrix as reinforcement. Nanocomposites were fabricated by powder metallurgy processing followed by Spark Plasma Sintering (SPS) consolidation. Transmission electron microscopy (TEM) and XRD of synthesized powder showed WS2 nanoparticles were synthesized successfully. Microstructural properties of nanocomposites were investigated using optical microscopy (OM), field emission scanning electron microscopy (FESEM) and energy dispersive spectroscopy (EDS). Nanoparticles were well distributed in the aluminum matrix and have a good dispersion. The presence of nanoparticles in the matrix reduces the size of the grain less than 20 µm so that the size of the grain becomes smaller by increasing the amount of nanoparticles .The density of the sample showed that the nanocomposite had a very good compressibility and relative density reach to near 99% in 4wt. %WS2. Hardness and compressive strength of nanocomposites were evaluated. Mechanical evaluations indicated that, the increase in weight fraction of WS2 nanoparticles, resulted in improvement of hardness and compressive strength of aluminum. Concentration of tungsten disulfide nanoparticles has a direct effect on increasing the mechanical properties of nanocomposite. The compressive strength increased up to 120 MPa, about twice the base metal, and the hardness raised up to 30%.
[1] Y. Iwai, H. Yoneda, T. Honda, Sliding wear behavior of Sic whisker-reinforced aluminum composite, Wear, Vol.181-183, pp 594-602, 1995.
[2] S. Kumar, M. Chakraborty, V.S. Sarma, B,S Murty, Tensile and wear behaviour of in situ Al–7Si/TiB2 particulate composites, Wear,Vol. 265, pp 134–142, 2008
[3] S. Gopalakrishnan, N .Murugan, Production and wear characterisation of AA 6061 matrix titanium carbide particulate reinforced composite by enhanced stir casting method, composites part B, Vol. 43(2), pp 302–308, 2012 .
[4] S. Rengifo, C. Zhang, S. Harimkar, B. Boesl, A. Agarwal, Effect of WS2 Addition on Tribological Behavior of Aluminum at Room and Elevated Temperatures, Tribology Letters, Vol. 65, pp 76-86, 2017
[5] J. Wozniak, M. Kostecki, T. Cygan, M. Buczek, A. Olszyna, Self-lubricating aluminium matrix composites reinforced with 2D crystals, composites part B, ,doi: 10.1016/ j.compositesb.2016.11.054, 2016
[6] C.U.I. Jirang , J.R Hans, Recycling of automotive aluminum, Transactions of Nonferrous Metals Society of China, Vol. 20, pp 2057-2063, 2010.
[7] B. Bhushan, Introduction to tribology. John Wiley & Sons, New York, USA, 2002
[8] Cecilia Borgonovo, Diran Apelian, Manufacture of Aluminum Nanocomposites:A Critical Review, Materials Science Forum, Vol 678, pp 1-22, 2011.
[9] E.S. Youssef E.Kady, T. S. Mahmoud, M.A. Sayed, Elevated Temperatures Tensile Characteristics of Cast A356/Al2O3 Nanocomposites Fabricated Using a Combination of Rheocasting and Squeeze Casting Techniques, Materials Sciences and Applications, Vol 2, pp 390-398 2011.
[10] H.R. Shakeri, Z. Wang, Effect of alternative aging process on the fracture and interfacial properties of particulate Al2O3–reinforced Al (6061) metal matrix composite, Metallurgical and Materials Transactions A, Vol. 33A, pp. 1699-1713, 2002.
[11] Z. Zhang, D.L Chen, Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites, Materials Science and Engineering: A, Vol.483–484, pp 148–152, 2008
[12] Z. Zhang, D.L Chen, Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength. Scripta Materialia. Vol 54, pp 1321–1326, 2006
[13] A. Sanaty-Zadeh, Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall–Petch effect. Materials Science and Engineering: A, Vol 531, pp112–118, 2012.
[14] P.Luo, D.T. McDonald, W. Xu, S.Palanisamy, M.S Dargusch, K. A Xia, modified Hall–Petch relationship in ultrafine-grained titanium recycled from chips by equal channelangular pressing. Scripta Materialia, Vol. 66, pp785–788, 2012
[15] Y.C. Kang, S.L. Chan, Tensile properties of nanometric Al2o3 particulate reinforced aluminum matrix composites, Materials Chemistry and Physics, vol. 85, pp.438–443, 2004.
[16] Y. Wang, W.M. Rainforth, H. Jones, M. Lieblich, Dry wear behaviour and its relation to microstructure of novel 6092 aluminium alloy–Ni 3 Al powder metallurgy composite, Wear, vol. 251, pp.1421–1432, 2001.
[17] C. Suryanarayana, Mechanical alloying and milling, Progress in Materials Science, vol. 46, pp 184, 2001.
[18] K. Miyoshi, M. Dekker, Solid lubricant – fundamentals and applications. Inc, New York, USA, 2001
[19] A. Sorrentino, C. Altavilla, M. Merola, A. Senatore, P. Ciambelli, S. Iannace, Nanosheets of MoS2 -oleylamine as hybrid filler for self-lubricating polymer composites: Thermal, tribological, and mechanical properties, Polymer Composites, ,Vol. 36(6), pp 1124-1134, 2015
[20] Y. Zhang, J. Ye, Y. Matsuhashi,Y. Iwasa, Ambipolar MoS2 Thin Flake Transistors, Nano Letter, Vol. 12(3), pp 1136-1140, 2012.
[21] K. Broniszewski, J. Wozniak, K. Czechowski, L. Jaworska A. Olszyna, Al2O3-Mo cutting tools for machining hardened stainless steel, Wear, Vol 303, pp 87-9, 2013
[22] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors, Nature Nanotechnology, Vol.6(3), pp 147-150, 2011
[23] J. Wang, Z. Li, G. Fan, H. Pan, et al, Reinforcement with graphene nanosheets in aluminum matrix composites. Scripta Materialia, Vol. 66, pp 594-597, 2012.
[24] J.L. Li, Y.C. Xiong, X.D. Wang, S.J. Yan, C. Yang, W.W. He, J.Z. Chen, S.Q. Wang, X.Y. Zhang, S.L. Dain, Microstructure and tensile properties of bulk nanostructured aluminum/graphene composites prepared via cryomilling Materials Science & Engineering A, Vol. 626, p400–405, 2015.
[25] B. Rebba, N. Ramanaiah, Evaluation of mechanical properties of aluminium alloy (Al-2024) reinforced with molybdenum disulphide (MoS2) metal matrix composites, Procedia Materials Science, Vol. 6, pp 1161-1169, 2014.
[26] N. Nakayama, S. Sakagami, M. Horita, H. Miki, A. Takahashi, K. Hashimoto, Fabrication of WS2-dispersed Al Composite Material by Compression Shearing Method at Room Temperature, Key Engineering Materials, Vol. 622-623, pp 1066-107, 2014
[27] N. Nemati, R. Khosroshahi , M. Emamy, A. Zolriasatein, Investigation of microstructure, hardness and wear properties of Al–4.5 wt.% Cu–TiCnanocomposites produced by mechanical milling. Materials and Design,Vol. 32, pp 3718–3729, 2011
[28] محمد امین شافعی، سید جمال حسینی پور، محمد رجبی،" اثر افزودن زیرکونیوم بر ریزساختار و سختی آلیاژ 5Cu.1-5Mg.2-6Zn-A تولیدی به روش آایاژ سازی مکانیکی" فصلنامه علمی- پژوهشی فرایندهای نوین در مهندسی مواد، مقاله 21 ،دوره 9 ،شماره 4 ،صفحه 225-235 ،1394
[29] M. Tabandeh Khorshid, S.A. Jenabali Jahromi, M.M Moshksar, Mechanical properties of tri-modal Al matrix composites reinforced by nano and submicron-sized Al2O3 particulates attrition milling and hot extrusion developed by wet, Materials and Design, Vol.31, pp 3880–4, 2010
[30] M. Rahimian, N. Parvin, N. Ehsani, Investigation of particle size and amount of alumina on microstructure and mechanical properties of Al matrix composite made by powder metallurgy, Materials Science and Engineering: A,Vol 527, pp 1031–8, 2010
[31] A. Slipenyuk,V. Kuprin, Y. Milman, V. Goncharuk, J. Eckert, Properties of P/M processed particle reinforced metal matrix composites specified by reinforcement concentration and matrix-to-reinforcement particle size ratio, Acta Materialia, Vol. 54, pp157–66, 2006.
[32] دانیال داوودی، سید امیرحسین امامی و علی سعیدی، "تولید و بررسی خواص مکانیکی پودر نانوکامپوزیت آلومینیوم 7014/آلومینا به روش آلیاژسازی مکانیکی"، فصلنامه علمی- پژوهشی فرایندهای نوین در مهندسی مواد، مقاله 10 ،دوره 9 ،شماره 4 ،صفحه 93-106 ،139
[33] یاسمن صابری کاخکی، سعید ناطق، شمس الدین میردامادی،"
بررسی خواص کامپوزیت متخلخل زمینه آلومینیوم تقویت شده با نانوذرات کاربید سیلسیم با روشهای مختلف ارزیابی خواص خزشی" فصلنامه علمی- پژوهشی فرایندهای نوین در مهندسی مواد، مقاله 3، دوره 11، شماره 2، صفحه 41-56، 1396
_||_