اثر دما بر ریز ساختار و تشکیل ترکیبات بین فلزی در اتصال Mg / Al انجام شده به روش جوشکاری نفوذی
محورهای موضوعی : روش ها و فرآیندهای نوین در تولیدمحمد عمار مفید 1 , مصطفی حاجیان حیدری 2 , احسان لریایی 3 , هاتف شاکری 4
1 - استادیار، گروه مهندسی نفت معدن و مواد، دانشکده فنی مهندسی، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران
2 - استادیار، دانشکده مهندسی شیمی و مواد، دانشگاه صنعتی شاهرود، شاهرود، سمنان، ایران
3 - دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی واحد تهران مرکزی
4 - دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی واحد تهران مرکزی
کلید واژه: ریز ساختار, آلیاژ منیزیم, آلیاژ آلومینیوم, ترکیب بین فلزی, اتصالدهی نفوذی,
چکیده مقاله :
اتصالدهی نفوذی دو آلیاژ غیر همجنس 5083 Al و 31 Mg AZدر دماهای 420، 430، 440 و ℃450 در مدت زمان اتصالدهی 60 دقیقه انجام شد. جهت بررسی مشخصه های ریز ساختاری در ناحیه اتصال، از میکروسکوپی الکترونی روبشی (SEM)، طیف سنجی تفکیک انرژی (EDS) و پراش پرتو –X (XRD) استفاده گردید. نتایج نشان داد که ایجاد اتصال را میتوان به نفوذ حالت – جامد Mg و Al به داخل آلیاژهای 5083 Al و 31MgAZ و به دنبال آن، تشکیل یوتکتیک و ذوب قانونمند در امتداد فصل مشترک مربوط دانست. در دمای اتصالدهی ℃430، درشت شدن دانه القا شده به وسیله نفوذ، در فصل مشترک مشاهده گردید. با افزایش دمای اتصالدهی، نفوذ پذیری اتمی افزایش یافته و همین امر، ایجاد اتصال شیمیایی را تسهیل و تسریع مینماید. در دمای اتصالدهی ℃440، در مرکز جوش، ناحیه ای با شکل غیر عادی مشاهده گردید که ریز ساختار آن متفاوت از دو ماده پایه میباشد. این ناحیه دارای شکل غیرعادی، حاوی حجم زیادی ترکیب بین فلزی Al12Mg17 بوده و سختی به مراتب بالاتری را در مرکز جوش از خود نشان داد. تحقیق حاضر نشان میدهد، ذوب قانونمند باعث ایجاد ترکیب بین فلزی Al12Mg17 در مرکز جوش گشته است.
The diffusion bonding of two dissimilar alloys Al 5083 and Mg AZ31 was carried out at 420,430.440 and 450 °C for bonding time of 60 min. In order to characterize the microstructure evolution in the joint zone, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) were applied. The results show that joint formation is attributed to the solid-state diffusion of Mg and Al into Al 5083 and Mg AZ31 alloys followed by eutectic formation and constitutional liquation along the interface. At bonding temperature of 430°C diffusion induced grain coarsening was observed at the interface. With increase in bonding temperature, the atomic diffusivity increases, results in easier and speeder chemical bonding. In bonding temperature of 440°C the weld had an irregular shaped region in the weld center, having a different microstructure from the two base materials. The irregular shaped region contained a large volume of intermetallic compound Al12Mg17 and showed significantly higher hardness in the weld center. The present study suggests that constitutional liquation resulted in the intermetallic compound Al12Mg17 in the weld center.
[1] L. M. Liu, S. X. Wang & M. L. Zhu, “Study on TIG welding of dissimilar Mg Alloy and copper with Fe as interlayerˮ, Sci Technol Weld Join, Vol. 11, pp. 523–5, 2006.
[2] P. Liu, Y. J. Li, H. R. Geng & J. Wang, “Microstructure characteristics in TIG welded joint of Mg Al dissimilar materialsˮ, Mater. Lett., Vol. 61, pp. 1288–1291, 2007.
[3] C. Somasekharan & L. E. Murr, “Microstructures in friction-stir welded dissimilar magnesium Alloys and magnesium alloys to 6061-T6 aluminum alloyˮ, Mater.Charact., Vol. 52, pp. 49–64, 2004.
[4] م. شعبانی، ب. شایق بروجنی و ر. ابراهیمی کهریزسنگی، " تأثیر سرعت چرخش ابزار بر خواص مکانیکی و رفتار خوردگی اتصال غیرهمجنس آلیاژ آلومینیوم 5083 و تیتانیوم خالص تجاری به روش جوشکاری همزن اصطکاکی"، فصلنامه فرآیند های نوین در مهندسی مواد، سال یازدهم، شماره چهارم، صفحات96 - 79 ، زمستان1396.
[5] ح. آقاجانی درازکلا، م. الیاسی و م. حسین زاده، " بررسی شکل گیری عیوب و لایه های بین فلزی در جوشکاری اصطکاکی اغتشاشی آلومینیومAA100 به فولاد"A441 AISI ، فصلنامه فرآیند های نوین در مهندسی مواد، سال نهم، شماره سوم، صفحات233 - 119 ، پاییز 1394.
[6] J. Wang, J. C. Feng & Y. X. Wang, “Microstructure of Al–Mg dissimilar weld made by cold metal transfer MIG weldingˮ, Mater. Sci. Technol., Vol. 24, pp. 827–831, 2008.
[7] G. Mahendran, N. BAlasubramanian & T. Senthilvelan, “Influences of diffusion bonding process parameters on bond characteristics of Mg–Cu dissimilar jointsˮ, Trans. Non - Ferrous Met.Soc.China, Vol. 20, pp. 997– 1005, 2010.
[8] G. Mahendran, V. balasubramanian & T. Senthilvelan, “Developing diffusion bonding windows for joining AZ31B magnesium - AA2024 aluminium alloysˮ, Mater.Des., Vol. 30, pp. 1240–1244, 2009.
[9] S. Jing, W. Ke hong, Z. Qi, Z. De ku, H. Jun & G. Jia qi, “Effect of joining temperature on microstructure and properties of diffusion bonded Mg/Al joints, Transˮ, Nonferrous Met.Soc.China, Vol. 22, pp. 1961–1966, 2012.
[10] M. W. Tseng, D. B. Williams, K. K. Soni & R. Levi-Setti, “MicrostructurAl evolution during transient liquid-phase bonding in a Ni-base superAlloy/sapphire fiber compositeˮ, J. Mater. Sci., Vol. 34, pp. 5187–5197, 1999.
[11] N. Orhan, T. I. Khan & M. Eroglu, “Diffusion bonding of a microduplex stainless steel to Ti-6Al-4Vˮ, Scripta Materialia, Vol. 45, pp. 441–446, 2001.
[12] M. J. Fernandus, T. Senthilkumar, V. balasubramanian & S. Rajakumar, “Optimizing diffusion bonding parameters in AA6061-T6 Aluminum and AZ80 magnesium alloy dissimilar jointsˮ, J. Mater. Eng. Perform., Vol. 21, pp. 2303–2315, 2012.
[13] J. Shang, K. H. Wang, Q. Zhou, D. K. Zhang, J. Huang & J.Q. Ge, “Effect of joining temperature on microstructure and properties of diffusion bonded Mg/Al jointsˮ, Trans. Nonferrous Met. Soc. China, Vol. 22, pp. 1961–1966, 2012.
[14] D. Dietrich, D. Nickel, Krause, M. T. Lampke, M. P. Coleman & V. Randle, “Formation of intermetAllic phases in diffusion-welded joints of Aluminium and magnesium alloysˮ, J. Mater. Sci., Vol. 46, pp. 357–364, 2011.
[15] W. Liu, L. Long, Y. Ma & L. Wu, “Microstructure evolution and mechanical properties of Mg/Al diffusion bonded jointsˮ, Journal of Alloys and Compounds, Vol. 643, pp. 34−39, 2015.
[16] M. Joseph-Fernandus, T. Senthikumar & V. Balasubramanian, “Developing temperature-time and pressure-time diagrams for diffusion bonding AZ80 magnesium and AA6061 aluminium alloysˮ, Materials and Design, Vol. 32, pp. 1651−1656, 2011.
[17] ASTM Committee A01 A1038–10 standard practice for portable hardness testing by the ultrasonic contact impedance method, 2010.
[18] W. Juan, L., Yajiang, L., Penga & G. Haoranb, “Microstructure and XRD anAlysis in the interface zone of Mg/Al diffusion bonding”, J. Mater. Process. Tech., Vol. 205, No. 1-3, pp. 146-150, 2008.
[19] M. Joseph Fernandus, T. Senthilkumar, V. B. Alasubramanian & S. Rajakumar, “Optimising diffusion bonding parameters to maximize the strength of AA6061 aluminium and AZ31B magnesium alloy jointsˮ, Mater. Des., Vol. 33, pp. 31–41, 2012.
[20] M. Jafarian, A. Khodabandeh & S. A. Manafi, “Evaluation of diffusion welding of 6061 aluminum and AZ31 magnesium alloys without using an interlayerˮ, Mater. Des., Vol. 65, pp. 160–164, 2015.
[21] X. G. Fan, D. M. Jiang, Q. C. Meng, B. Y. Zhang & T. Wang, “Evolution of eutectic structures in Al–Zn–Mg–Cu Alloys during heat treatmentˮ, Trans Nonferr Met Soc China, Vol. 16, pp. 577–81, 2006.
[22] ASM handbook, Alloy phase diagrams, ASM International, Metals park, OH, Vol. 3, 1988.
[23] S. Jing, W. Ke-hong, Z. Qi, Z. De ku, H. Jun & G. Jia qi, “Effect of joining tem- perature on microstructure and properties of diffusion bonded Mg/Al jointsˮ, Trans. Nonferrousmet.Soc.China, Vol. 22, pp. 1961–1966, 2012.
[24] Y. S. Sato & C. Park, “Constitutional liquation during dissimilar friction stir welding of Al and Mg alloysˮ, Scr Mater, Vol. 50, pp. 1233–1236, 2004.
[25] M. Jafarian, M. Saboktakin Rizi, M. Jafarian, M. Honarmand, H. R. Javadinejad, A. Ghaheri, M. T. Bahramipour & M. Ebrahimian, “Effect of thermal tempering on microstructure and mechanical properties of Mg-AZ31/Al-6061 diffusion bondingˮ, Materials Science & Engineering A, Vol. 666, pp. 372–9, 2016.
_||_