Projectivity and injectivity of $\mathsf{G}$-Hilbert $\Im$-modules
Subject Areas : Functional analysisA. Yousefi 1 , M. R. Mardanbeigi 2 *
1 - Department of Mathematics, Faculty of Science, Science and Research Branch, Islamic Azad University (IAU), Tehran, Iran
2 - Department of Mathematics, Faculty of Science, Science and Research Branch, Islamic Azad University (IAU), Tehran, Iran
Keywords: $G$-projective, $G$-projective cover, extremally $G$-disconnected, $G$-$C^*$-algebra, $G$-self dual, $G$-monotone complete, $G$-$*$-representation, $G$-Hilbert $\Im$-module, $G$-injective Hilbert $\Im$-module, $G$-projective Hilbert $\Im$-module,
Abstract :
Let $\mathsf{G}$ be a discrete group acting on $C^*$-algebra $\Im$. In this paper, we investigate projectivity and injectivity of $G$-Hilbert $\Im$-modules and study the equivalent conditions characterizing $\mathsf{G}$-$C^*$-subalgebras of the algebra of compact operators on $\mathsf{G}$-Hilbert spaces in terms of general properties of $\mathsf{G}$-Hilbert $\Im$-modules. In particular, we show that $\mathsf{G}$-Hilbert $\Im$-(bi)modules on $\mathsf{G}$-$C^*$-algebra of compact operators are both projective and injective.
[1] D. Bakic, B. Guljas, Extensions of Hilbert C∗-modules I, Houston Math. J. 30 (2004), 537-558.
[2] M. D. Choi, E. G. Effros, Injectivity and operator spaces, J. Func. Anal. 24 (1977), 156-209.
[3] E. Feizi, J. Soleymani, Injectivity and projectivity of some classes of Frechet algebras, UPB. Sci. Ser. A. 82 (3) (2020), 53-60.
[4] M. Frank, Hahn-Banach type theorems for Hilbert C∗-modules, Inter. J. Math. 13 (2002), 675-693.
[5] M. Frank, Geometrical aspects of Hilbert C∗-module, Positivity. 3 (1999), 215-243.
[6] M. Frank, Self-duality and C∗-reflexivity of Hilbert C∗-modules, Zeitschr. Anal. Anwendungen. 9 (1990), 165-176.
[7] M. Frank, D. R. Larson, Frames in Hilbert C∗-modules and C∗-algebras, J. Operator Theory. 48 (2002), 273-314.
[8] M. Frank, V. I. Paulsen, Injective and Projective Hilbert C∗-module and C∗-algebras of Compact Operators, Preprint, 2008.
[9] H. Gonshor, Injective hulls of C∗-algebras, Trans. Amer. Math. Soc. 131 (1968), 315-322.
[10] H. Gonshor, Injective hulls of C∗-algebras II, Proc. Amer. Math. Soc. 24 (1970), 468-491.
[11] D. Hadwin, V. I. Paulsen, Injectivity and projectivity in analysis and topology, Sci. China. Math. 59 (2011), 2347-2359.
[12] F. Kasch, Module and Rings, B. G. Teubner, Stuttgart, 1977.
[13] E. C. Lance, Hilbert C∗-modules a Toolkit for Operator Algebraists, Lecture Notes Series, Vol. 210, Cambridge University Press, England, 1995.
[14] H. Lin, Bounded module maps and pure completely positive maps, J. Operator Theory. 26 (1991), 121-138.
[15] H. Lin, Extensions of multipliers and injective Hilbert modules, Chinese Ann. Math. Ser. B. 14 (1993), 387-396.
[16] H. Lin, Injective Hilbert C*-modules, Pacific J. Math. 154 (1992), 131-164.
[17] A. Mahmoodi, M. R. Mardanbeigi, On injective envelopes of AF-algebras, Thai. J. Math. 19 (2021), 1661-1669.
[18] V. M. Manuilov, E. V. Troisky, Hilbert C∗-modules, American Mathematical Society, 2005.
[19] T. Oikhberg, Injectivity and projectivity in p-multinormed spaces, Positivity. 22 (4) (2018), 1023-1037.
[20] W. L. Paschke, Inner product module over B∗-algebras, Trans. Amer. Math. Soc. 182 (1973), 443-468.
[21] W. L. Paschke, The double B-dual of inner product module over a C∗-algebra, Canad. J. Math. 26 (1971), 1272-1280.
[22] N. E. Wegge-Olsen, K-theory and C∗-algebras, a Frtendly Approach, Oxford University Press, Oxfored, 1993.
[23] Z. T. Xu, Hilbert C∗-modules and C∗-algebras, I (Engl./Chin.), Nanjing University Journal, Mathematical Biquarterly. 13 (1) (1996), 101-108.