Densities and fluxes of the conservation laws for the Kuramoto-Sivashinsky equation
Subject Areas : GeometryM. Jafari 1 , Y. Alipour Fakhri 2 , M. Khadivar 3
1 - Department of Mathematics, Payame Noor University, PO BOX 19395-4697, Tehran, Iran
2 - Department of Mathematics, Payame Noor University, PO BOX 19395-4697, Tehran, Iran
3 - Department of Mathematics, Payame Noor University, PO BOX 19395-4697, Tehran, Iran
Keywords: KS equation, Conversation laws, scaling symmetry, homotopy operator,
Abstract :
In this paper, the main purpose is to calculate the conservation laws of Kuramoto-Sivashinsky equation using the scaling method. Linear algebra and calculus of variations are used in this algorithmic method. Also the density of the conservation law is obtained by scaling symmetries of the equation and the flux corresponding to the density is calculated using the homotopy operator.
[1] Z. Ali, S. Husnine, I. Naeem, Exact solutions of generalized modified Boussinesq, Kuramoto-Sivashinsky and Camassa-Holm Equations via Double Reduction Theory, J. Appl. Math. (2013), 2013:902128.
[2] S. Anco, G. Bluman, Direct construction method for conservation laws of partial differential equations Part II: general treatment, Euro. J. Appl. Math. 13 (2002), 567-585.
[3] F. Calogero, A. Degasperis, Spectral Transform and Solitons, North Holland, Amsterdam, 1982.
[4] A. F. Cheviakov, Computation of fluxes of conservation laws, J. Engin. Math. 66 (2010), 153-173.
[5] W. Hereman, P. J. Adams, H. L. Eklund, M. S. Hickman, B. M. Herbst, Direct Methods and Symbolic Software for Conservation Laws of Nonlinear equations, Advances in Nonlinear Waves and Symbolic Computation, Nova Science Publishers, New York, 2009.
[6] M. Jafari, A. Tanhaeivash, Symmetry group analysis and similarity reductions of the thin film equation, J. Linear. Topol. Algebra. 10 (4) (2021), 287-293.
[7] M. Jafari, A. Zaeim, S. Mahdion, Scaling symmetry and a new conservation law of the Harry Dym equation, Mathematics Interdisciplinary Research. 6 (2) (2021), 151-158.
[8] A. Kalogirou, E. E. Keaveny, D. T. Papageorgiou, An in-depth numerical study of the two-dimensional Kuramoto-Sivashinsky equation, Proc. Royal. Soc. A. Math. Phy. Engin. Sci. (2015), 471:20140932.
[9] M. Nadjafikhah, R. Bakhshandeh Chamazkoti, Cartan equivalence problem for third-order differential operators, Turkish J. Math. 37 (6) (2013), 949-958.
[10] M. Nadjafikhah, M. Jafari, Computation of partially invariant solutions for the Einstein Walker manifolds' identifying equations, Commun. Nonlinear Sci. Numer. Simul. 18 (12) (2013), 3317-3324.
[11] E. Noether, Invariante variations problem, Nachr. Akad. Wiss. G¨ott. Math. Phys. Kl. 2 (1918), 235-257.
[12] P. J. Olver, Applications of Lie Groups to Differential Equations, Springer, New York, 1986.
[13] P. Paolo, M. Chaouqi, Modified Kuramoto-Sivashinsky equation: Stability of stationary solutions and the consequent dynamics, Phys. Rev. E. (2007), 75:027202.
[14] D. Poole, Symbolic Computation of Conservation Laws of Nonlinear Partial Differential Equations using Homotopy Operators, Ph.D. dissertation, Colorado School of Mines, Golden, Colorado, 2009.
[15] D. Poole, W. Hereman, The homotopy operator method for symbolic integration by parts and inversion of divergences with applications, Appl. Anal. 87 (2010), 433-455.
[16] M. Rosa, J. C. Camacho, M. Bruz´on, M. L. Gandarias, Lie symmetries and conservation laws for a generalized Kuramoto-Sivashinsky equation, Math. Meth. Appl. Sci. 41 (17) (2018), 7295-7303.
[17] V. Volterra, Lecons sur les Fonctions de Lignes, Gauthier-Villars, Paris, 1913.
[18] A. Wazwaz, New solitary wave solutions to the Kuramoto-Sivashinsky and the Kawahara equations, Appl. Math. Comput. 182 (2006), 1642-1650.