Integral type contraction and coupled fixed point theorems in ordered G-metric spaces
Subject Areas : Fixed point theoryE. Lotfali Ghasab 1 , H. Majani 2 * , G. Soleimani Rad 3
1 - Department of Mathematics, Shahid Chamran University of Ahvaz, Ahvaz, Iran
2 - Department of Mathematics, Shahid Chamran University of Ahvaz, Ahvaz, Iran
3 - Young Researchers and Elite club, West Tehran Branch, Islamic Azad University, Tehran, Iran
Keywords: Integral type contraction, coupled fixed point, Lebesgue integrals, ordered G-metric space,
Abstract :
In this paper, we apply the idea of integral type contraction and prove some coupled fixed point theorems for such contractions in ordered $G$-metric space. Also, we support the main results by an illustrative example.
[1] R. P. Agarwal, M. A. El-Gebeily, D. O’Regan, Generalized contractions in partially ordered metric spaces, Appl. Anal. 87 (2008), 1-8.
[2] P. R. Agarwal, Z. Kadelburg, S. Radenovic, On coupled fixed point results in asymmetric G-metric spaces, Journal of Inequalities and Applications. (2013), 2013:528.
[3] R. P. Agarwal, E. Karapinar, D. O’Regan, A. F. Roldan-López-de-Hierro, Fixed Point Theory in Metric Type Spaces, Springer, Switzerland, 2015.
[4] A. Aghanians, K. Nourouzi, Fixed points of integral type contractions in uniform spaces, Filomat. 29 (7) (2015), 1613-1621.
[5] R. Akbar Zada, T. Li, Integral type contraction and coupled coincidence fixed point theorems for two pairs in G-metric spaces, Hecet. J. Math. Stat. 45 (5) (2016), 1475-1484.
[6] T. G. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006), 1379-1393.
[7] A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, Inter. J. Math. Sci. 29 (2002), 531-536.
[8] D. J. Guo, Partial Order Methods in Nonlinear Analysis, Shandong Sci. Technol. Press, Jinan, 2000 (in Chinese).
[9] J. Harjani, B. López, K. Sadarangani, Fixed point theorems for mixed monotone operators and applications to integral equations, Nonlinear Anal. 74 (2011), 1749-1760.
[10] M. Jleli, B. Samet, Remarks on G-metric spaces and fixed point theorems, Fixed Point Theory Appl. (2012), 2012:210.
[11] Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2) (2006), 289-297.
[12] J. J. Nieto, R. Rodriguez-Lopez, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order. 22 (2005), 223-239.
[13] S. Radenovic, Bhaskar-Lakshmikantham type-results for monotone mappings in partially ordered metric spaces, Int. J. Nonlinear Anal. Appl. 5 (2) (2014), 37-49.
[14] S. Radenovic, Coupled fixed point theorems for monotone mappings in partially ordered metric spaces, Kragujevac J. Math. 38 (2) (2014), 249-257.
[15] A. C. M. Ran, M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132 (2004), 1435-1443.
[16] B. Samet, C. Vetro, An integral version of´Ciri´ c’s fixed point theorem, Mediterr. J. Math. 9 (1) (2012), 225-238.
[17] B. Samet, C.Vetro, F.Vetro, Remarks on G-Metric spaces, Inter. J. Anal. (2013), 2013:917158.
[18] G. Soleimani Rad, S. Shukla, H. Rahimi, Some relations between n-tuple fixed point and fixed point results, RACSAM. 109 (2015), 471-481.