مروری بر تولید طعمدهندههای مواد غذایی توسط روشهای بیوتکنولوژیکی
محورهای موضوعی : شیمی مواد غذاییاسما بساطی 1 , مینا خان بگی دوگاهه 2 , مریم قراچورلو 3
1 - دانشجوی دکتری گروه علوم و مهندسی صنایع غذایی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 - دانشجوی دکتری گروه علوم و مهندسی صنایع غذایی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
3 - استاد گروه علوم و مهندسی صنایع غذایی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: تخمیر, طعم, کشت بافت, میکروارگانیسم, آنزیم, بیوتکنولوژی,
چکیده مقاله :
مقدمه: عطرو طعم یکی از مهمترین ویژگیهای غذا است که مستقیماً با پذیرش محصول توسط مصرفکنندگان ارتباط دارد. روند رو به افزایش مصرف ترکیبات طعمدهنده غذا باعث ایجاد انگیزه در تولید طعمهای غذایی شده بطوریکه تقاضای جهانی برای طعم و عطر طبیعی بهطور مداوم در حال افزایش است. گیاهان و میکروارگانیسمها منابع اصلی ترکیبات ایجاد کننده طعم و عطر مانند ترپنوئیدها، آلدئیدها، متیل کتون ها هستند اما به دلیل تولید در غلظتهای کمتر، جداسازی و استخراج چنین مواد شیمیایی با ارزش افزوده هزینهبر است. لذا تولید بیوتکنولوژیکی ترکیبات طعم دهنده مورد توجه قرار گرفته است.مواد و روش ها: در دهه گذشته تحقیقات گسترده ای در زمینه تولید بیوتکنولوژیکی ترکیبات طعم دهنده انجام شده است. در این مطالعه سعی شده است تا سه روش بیوتکنولوژیکی اصلی شامل استفاده از آنزیمها، استفاده از میکروارگانیسمها و بافت گیاهی و کشت سلولی مورد بحث قرار گیرند.یافته ها: تکنیکهای مرسوم تولید ترکیبات طعمدهنده با توجه به تقاضای صعودی بازار از نظر کمیت و تنوع کافی نیست. روشهای تولید طعم فعلی از سنتز شیمیایی استفاده میکنند که میتواند تعداد بیشتری طعم را با زمان کمتر تولید کند. بااینحال، تقاضا برای محصولات طبیعی در مواد مصرفی، نیاز به روشهای جدید برای تولید ترکیبات طعمدهنده با برچسب منشأ طبیعی را ایجاد کرده است. تولید بیوتکنولوژیکی جایگزین جذابی برای تولید طعم است، زیرا در شرایط ملایم رخ میدهد، انتخابپذیری بالایی دارد، ضایعات سمی تولید نمیکند و محصولاتی تولید میکند که می توانند بهعنوان طبیعی برچسبگذاری شوند. ترکیبات طعم دهنده طبیعی که توسط فرآیندهای بیوتکنولوژیکی به دست می آیند به دلیل افزایش تقاضای مصرف کنندگان برای افزودنی های غذایی طبیعی، نقش فزاینده ای در صنایع غذایی، آرایشی، شیمیایی و دارویی ایفا می کنند.نتیجه گیری: تکنیکهای نوظهور در بیوتکنولوژی، صنایع را قادر به تولید ترکیباتی کرده است که میتواند طبیعی در نظر گرفته شود. شکی نیست که این فناوری ها به سبب مزایای زیاد، در آینده به عوامل مهمتری در تولید طعمدهنده تبدیل خواهند شد.
Introduction: Flavor is one of the most important characteristics of food, which is directly related to the acceptance of the product by consumers. The increasing trend in the consumption of food flavoring compounds has motivated the production of food flavors therefore the global demand for natural flavors and aromas is continuously increasing. Plants and microorganisms are the main sources of flavor and aroma compounds such as terpenoids, aldehydes, methyl ketones, but due to their production in lower concentrations, the isolation and extraction of such value-added chemicals is expensive. Therefore, the biotechnological production of flavor compounds has been considered.Materials and Methods: In the last decade, research has been carried out in the field of biological production of flavoring compounds. In this study, main biotechnological methods including the use of enzymes, microorganisms, tissue plants and cell culture have been investigated.Results: Conventional techniques for producing flavor compounds are not sufficient in terms of quantity and variety due to the rising market demand. Current flavor production methods use chemical synthesis, which can produce a greater number of flavors in less time. However, the demand for natural products has created the need for new methods to produce flavoring compounds labeled as natural origin. Biotechnological production is an attractive alternative to flavor production because it occurs under mild conditions, has high selectivity, produces no toxic waste, and produces products that can be labeled as "natural." Natural flavoring compounds obtained by biotechnological processes play an increasing role in the food, cosmetic, chemical and pharmaceutical industries due to the increasing consumer demand for natural food additives.Conclusion: Emerging techniques in biotechnology have enabled industries to produce compounds that might be considered natural. There is no doubt that these technologies will become more important factors in the production of flavoring chemicals in the future due to their many advantages.
Aravindan, R., Anbumathi, P. & Viruthagiri, T. (2007). Lipase applications in food industry.
Arya, S., Kaimal, A. M., Chib, M., Sonawane, S. K. & Show, P. L. (2019). Novel, energy efficient and green cloud point extraction: technology and applications in food processing. Journal of food science and technology, 56, 524-534. https://doi.org/10.1007/s13197-018-3546-7
Boratyński, F., Szczepańska, E., De Simeis, D., Serra, S. & Brenna, E. (2020). Bacterial biotransformation of oleic acid: New findings on the formation of γ-dodecalactone and 10-ketostearic acid in the culture of Micrococcus Luteus. Molecules, 25(13), 3024. https://doi.org/10.3390/molecules25133024
Braga, A., Guerreiro, C. & Belo, I. (2018). Generation of flavors and fragrances through biotransformation and de novo synthesis. Food and Bioprocess Technology, 11, 2217-2228. https://doi.org/10.1007/s11947-018-2180-8
Carter, O. A., Peters, R. J. & Croteau, R. (2003). Monoterpene biosynthesis pathway construction in Escherichia coli. Phytochemistry, 64(2), 425-433. https://doi.org/10.1016/S0031-9422(03)00204-8
Cheetham, P. S. (2020). The flavour and fragrance industry. In Biotechnology-The Science and the Business. 533-562: CRC Press. https://www.doi.org/10.1201/9781003078432-26
Dan, T., Ren, W., Liu, Y., Tian, J., Chen, H., Li, T. & Liu, W. (2019). Volatile flavor compounds profile and fermentation characteristics of milk fermented by Lactobacillus delbrueckii subsp. bulgaricus. Frontiers in Microbiology, 10, 2183. https://doi.org/10.3389/fmicb.2019.02183
de Oliveira Felipe, L., de Oliveira, A. M. & Bicas, J. L. (2017). Bioaromas–perspectives for sustainable development. Trends in Food Science & Technology, 62, 141-153. https://doi.org/10.1016/j.tifs.2017.02.005
de Oliveira Felipe, L., Paulino, B. N., Sales, A., Molina, G. & Bicas, J. L. (2019). Production of food aroma compounds (Microbial and enzymatic methodologies). In Food Aroma Evolution. 293-306: CRC Press.
De Vuyst, L., Vaningelgem, F., Ghijsels, V., Tsakalidou, E. & Leroy, F. (2011). New insights into the citrate metabolism of Enterococcus faecium FAIR-E 198 and its possible impact on the production of fermented dairy products. International Dairy Journal, 21(9), 580-585. https://doi.org/10.1016/j.idairyj.2011.03.009
Escamilla, M., Valdés, S., Soriano, J. & Tomasini, A. (2000). Effect of some nutritional and environmental parameters on the production of diacetyl and on starch consumption by Pediococcus pentosaceus and Lactobacillus acidophilus in submerged cultures. Journal of applied microbiology, 88(1), 142-153. https://doi.org/10.1046/j.1365-2672.2000.00934.x
Fan, G., Teng, C., Xu, D., Fu, Z., Minhazul, K. A., Wu, Q. & Li, X. (2019). Enhanced production of ethyl acetate using co-culture of Wickerhamomyces anomalus and Saccharomyces cerevisiae. Journal of bioscience and bioengineering, 128(5), 564-570. https://doi.org/10.1016/j.jbiosc.2019.05.002
García-Bofill, M., Sutton, P. W., Guillen, M. & Alvaro, G. (2019). Enzymatic synthesis of vanillin catalysed by an eugenol oxidase. Applied Catalysis A: General, 582, 117117. https://doi.org/10.1016/j.apcata.2019.117117
Gotow, N., Skrandies, W., Kobayashi, T. & Kobayakawa, T. (2018). Familiarity and retronasal aroma alter food perception. Chemosensory Perception, 11, 77-94. https://doi.org/10.1007/s12078-018-9244-z
Gupta, C., Prakash, D. & Gupta, S. (2015). A biotechnological approach to microbial based perfumes and flavours. J. Microbiol. Exp, 2 (1). http://10.0.60.46/jmen.2015.01.00034
Hansen, E. H., Møller, B. L., Kock, G. R., Bünner, C. M., Kristensen, C., Jensen, O. R. & Hansen, J. (2009). De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker's yeast (Saccharomyces cerevisiae). Applied and Environmental Microbiology, 75 (9), 2765-2774. https://doi.org/10.1128/AEM.02681-08
Jaramillo, D. A., Méndez, M. J., Vargas, G., Stashenko, E. E., Vasco-Palacios, A. M., Ceballos, A. & Caicedo, N. H. (2020). Biocatalytic potential of native basidiomycetes from Colombia for flavour/aroma production. Molecules, 25 (18), 4344. https://doi.org/10.3390/molecules25184344
Karra-Châabouni, M., Ghamgui, H., Bezzine, S., Rekik, A. & Gargouri, Y. (2006). Production of flavour esters by immobilized Staphylococcus simulans lipase in a solvent-free system. Process Biochemistry, 41(7), 1692-1698. https://doi.org/10.1016/j.procbio.2006.02.022
Kaur, K., Sharma, R. & Singh, S. (2020). Bioactive composition and promising health benefits of natural food flavors and colorants: potential beyond their basic functions. Pigment & Resin Technology, 49(2), 110-118. https://doi.org/10.1108/PRT-02-2019-0009
Kruis, A. J., Bohnenkamp, A. C., Patinios, C., van Nuland, Y. M., Levisson, M., Mars, A. E. & Weusthuis, R. A. (2019). Microbial production of short and medium chain esters: enzymes, pathways, and applications. Biotechnology advances, 37(7), 107407. https://doi.org/10.1016/j.biotechadv.2019.06.006
Kunjapur, A. M. & Prather, K. L. (2015). Microbial engineering for aldehyde synthesis. Applied and Environmental Microbiology, 81(6), 1892-1901. https://doi.org/10.1128/AEM.03319-14
Liang, C., Ding, S., Sun, W., Liu, L., Zhao, W., Zhang, D. & Chen, Y. (2020). Biofilm-based fermentation: a novel immobilisation strategy for Saccharomyces cerevisiae cell cycle progression during ethanol production. Applied Microbiology and Biotechnology, 104, 7495-7505. https://doi.org/10.1007/s00253-020-10770-1
Liu, H. M., Zou, Y., Yao, C. Y. & Yang, Z. (2020). Enzymatic synthesis of vanillin and related catalytic mechanism. Flavour and fragrance journal, 35(1), 51-58. https://doi.org/10.1002/ffj.3528
Longo, M. A. & Sanromán, M. A. (2006). Production of food aroma compounds: microbial and enzymatic methodologies. Food technology and biotechnology, 44(3), 335-353.
Luziatelli, F., Brunetti, L., Ficca, A. G. & Ruzzi, M. (2019). Maximizing the efficiency of vanillin production by biocatalyst enhancement and process optimization. Frontiers in bioengineering and biotechnology, 7, 279. https://doi.org/10.3389/fbioe.2019.00279
Maurya, R., Patel, H., Bhatt, D., Shakhreliya, S., Gohil, N., Bhattacharjee, G. & Singh, V. (2022). Microbial production of natural flavors and fragrances. In Recent Advances in Food Biotechnology.139-159: Springer. https://doi.org/10.1007/978-981-16-8125-7_7
Meussen, B. J., de Graaff, L. H., Sanders, J. P. & Weusthuis, R. A. (2012). Metabolic engineering of Rhizopus oryzae for the production of platform chemicals. Applied Microbiology and Biotechnology, 94, 875-886. https://doi.org/10.1007/s00253-012-4033-0
Molina, G., Pessôa, M. G., Bicas, J. L., Fontanille, P., Larroche, C. & Pastore, G. M. (2019). Optimization of limonene biotransformation for the production of bulk amounts of α-terpineol. Bioresource technology, 294, 122180. https://doi.org/10.1016/j.biortech.2019.122180
Ngamchuachit, P., Kitai, Y., Keeratipibul, S. & Phuwapraisirisan, P. (2020). Comparison of dynamic headspace trapping on Tenax TA and headspace stir bar sorptive extraction for analysis of grilled chicken (Yakitori) volatiles. Applied Science and Engineering Progress, 13(3), 202-212.
Otto, M., Wynands, B., Marienhagen, J., Blank, L. M. & Wierckx, N. (2020). Benzoate synthesis from glucose or glycerol using engineered Pseudomonas taiwanensis. Biotechnology journal, 15(11), 2000211. https://doi.org/10.1002/biot.202000211
Paterson, A. & Piggott, J. R. (2006). Flavour in sourdough breads: a review. Trends in Food Science & Technology, 17(10), 557-566. https://doi.org/10.1016/j.tifs.2006.03.006
Paulino, B. N., Sales, A., Felipe, L., Pastore, G. M., Molina, G. & Bicas, J. L. (2021). Recent advances in the microbial and enzymatic production of aroma compounds. Current Opinion in Food Science, 37, 98-106. https://doi.org/10.1016/j.cofs.2020.09.010
Poornima, K. & Preetha, R. (2017). Biosynthesis of food flavours and fragrances-A review. Asian J Chem, 29(11), 2345-2352. https://doi.org/10.14233/ajchem.2017.20748
Prabakaran, R., Marie, J. M. & Xavier, A. J. M. (2020). Biobased Unsaturated Polyesters Containing Castor Oil-Derived Ricinoleic Acid and Itaconic Acid: Synthesis, In Vitro Antibacterial, and Cytocompatibility Studies. ACS Applied Bio Materials, 3(9), 5708-5721. https://doi.org/10.1021/acsabm.0c00480
Reale, A., Ianniello, R. G., Ciocia, F., Di Renzo, T., Boscaino, F., Ricciardi, A. & McSweeney, P. L. (2016). Effect of respirative and catalase-positive Lactobacillus casei adjuncts on the production and quality of Cheddar-type cheese. International Dairy Journal, 63, 78-87. https://doi.org/10.1016/j.idairyj.2016.08.005
Rojas, V., Gil, J. V., Piñaga, F. & Manzanares, P. (2001). Studies on acetate ester production by non-Saccharomyces wine yeasts. International Journal of Food Microbiology, 70(3), 283-289. https://doi.org/10.1016/S0168-1605(01)00552-9
Rosca, I., Petrovici, A. R., Brebu, M., Stoica, I., Minea, B. & Marangoci, N. (2016). An original method for producing acetaldehyde and diacetyl by yeast fermentation. brazilian journal of microbiology, 47, 949-954. https://doi.org/10.1016/j.bjm.2016.07.005
Sadecka, J., Čaplová, Z., Tomáška, M., Šoltys, K., Kopuncová, M., Budiš, J. & Kuchta, T. (2019). Microorganisms and volatile aroma-active compounds in bryndza cheese produced and marketed in Slovakia. Journal of Food & Nutrition Research, 58(4).
Santos, K. A., Gonçalves, J. E., Cardozo-Filho, L. & da Silva, E. A. (2019). Pressurized liquid and ultrasound-assisted extraction of α-bisabolol from candeia (Eremanthus erythropappus) wood. Industrial Crops and Products, 130, 428-435. https://doi.org/10.1016/j.indcrop.2019.01.013
Schreier, P. (2006). Enzymes and flavour biotechnology. Biotechnology of aroma compounds, 51-72.
Scragg, A. (2006). The production of aromas by plant cell cultures. Biotechnology of aroma compounds, 239-263. https://doi.org/10.1007/BFb0102062
Scragg, A. (2007). The production of flavours by plant cell cultures. In Flavours and fragrances: chemistry, bioprocessing and sustainability 599-614: Springer. https://doi.org/10.1007/978-3-540-49339-6_25
Smit, B.A., Engels, W.J. & Smit, G. (2009). Branched chain aldehydes: production and breakdown pathways and relevance for flavour in foods. Applied microbiology and biotechnology, 81,.987-999. https://doi.org/10.1007/s00253-008-1758-x
van Kranenburg, R., Kleerebezem, M., van Hylckama Vlieg, J., Ursing, B. M., Boekhorst, J., Smit, B. A. & Siezen, R. J. (2002). Flavour formation from amino acids by lactic acid bacteria: predictions from genome sequence analysis. International Dairy Journal, 12(2-3), 111-121. https://doi.org/10.1016/S0958-6946(01)00132-7
Vandamme, E. J. & Soetaert, W. (2002). Bioflavours and fragrances via fermentation and biocatalysis. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 77(12), 1323-1332. https://doi.org/10.1002/jctb.722
Vandermaesen, J., Horemans, B., Bers, K., Vandermeeren, P., Herrmann, S., Sekhar, A. & Springael, D. (2016). Application of biodegradation in mitigating and remediating pesticide contamination of freshwater resources: state of the art and challenges for optimization. Applied Microbiology and Biotechnology, 100, 7361-7376. https://doi.org/10.1007/s00253-016-7709-z
Velasco B, R., gil G, J. H., García P, C. M. & Durango R, D. L. (2010). Production of 2-phenylethanol in the biotransformation of cinnamyl alcohol by the plant pathogenic fungus Colletotrichum acutatum. Vitae, 17(3), 272-280.
Verma, D. K., Al-Sahlany, S. T. G., Niamah, A. K., Thakur, M., Shah, N., Singh, S. & Aguilar, C. N. (2022). Recent trends in microbial flavour Compounds: A review on Chemistry, synthesis mechanism and their application in food. Saudi Journal of Biological Sciences, 29(3), 1565-1576. https://doi.org/10.1016/j.sjbs.2021.11.010
Vilela, A., Bacelar, E., Pinto, T., Anjos, R., Correia, E., Gonçalves, B. & Cosme, F. (2019). Beverage and food fragrance biotechnology, novel applications, sensory and sensor techniques: An overview. Foods, 8(12), 643. https://doi.org/10.1016/j.foodhyd.2020.105913
Wang, Y., Trani, A., Knaapila, A., Hietala, S., Coda, R., Katina, K. & Maina, N. H. (2020). The effect of in situ produced dextran on flavour and texture perception of wholegrain sorghum bread. Food hydrocolloids, 106, 105913. https://doi.org/10.1016/j.foodhyd.2020.105913
Wu, X., Zhu, L., Zhu, C., Wang, C. & Li, Q. (2019). Catalytic transformation of bio-oil to benzaldehyde and benzoic acid: an approach for the production of high-value aromatic bio-chemicals. Current Green Chemistry, 6(2), 135-146. https://doi.org/10.2174/2213346106666190830114619
Yao, X., Lv, Y., Yu, H., Cao, H., Wang, L., Wen, B. & Xin, F. (2020). Site-directed mutagenesis of coenzyme-independent carotenoid oxygenase CSO2 to enhance the enzymatic synthesis of vanillin. Applied Microbiology and Biotechnology, 104, 3897-3907. https://doi.org/10.1007/s00253-020-10433-1
Zhang, H., Zhang, L., Yu, X. & Xu, Y. (2020). The biosynthesis mechanism involving 2, 3-pentanedione and aminoacetone describes the production of 2-ethyl-3, 5-dimethylpyrazine and 2-ethyl-3, 6-dimethylpyrazine by Bacillus subtilis. Journal of Agricultural and Food Chemistry, 68(11), 3558-3567. https://doi.org/10.1021/acs.jafc.9b07809
Zhang, S., Guo, F., Yan, W., Dong, W., Zhou, J., Zhang, W. & Jiang, M. (2020). Perspectives for the microbial production of ethyl acetate. Applied Microbiology and Biotechnology, 104, 7239-7245. https://doi.org/10.1007/s00253-020-10756-z