بررسیخواص ضد میکروبی و آنتیاکسیدانی پروتئین هیدرولیزشده امعاء و احشاء ماهیبیاح (Liza abu)
محورهای موضوعی :
تکنولوژی مواد غذایی- فرآورده های گوشتی
سید رسول شاه حسینی
1
,
سید روح الله جوادیان
2
,
رضا صفری
3
1 - گروه علوم و صنایع غذایی، واحد نور، دانشگاه آزاد اسلامی، نور، ایران.
2 - گروه شیلات، واحد قائمشهر، دانشگاه آزاد اسلامی، قائمشهر، ایران
3 - پژوهشکده اکولوژی دریای خزر، موسسه تحقیقات علوم شیلاتیکشور، سازمان تحقیقات، آموزش و ترویج جهادکشاورزی، ساری، ایران.
تاریخ دریافت : 1399/05/09
تاریخ پذیرش : 1399/07/23
تاریخ انتشار : 1402/01/01
کلید واژه:
هیدرولیز آنزیمی,
فعالیت ضدمیکروبی,
فعالیت آنتی اکسیدانی,
ماهی بیاح,
آنزیمهای تجاری,
چکیده مقاله :
در این پژوهش فعالیت آنتی اکسیدانی و خاصیت ضد میکروبی پروتئین هیدرولیز شده از امعاء و احشاء ماهی بیاح (Liza abu) مورد بررسی قرار گرفت. پروتئین هیدرولیز در سه زمان مختلف (10، 20 و 30 دقیقه)، با استفاده از آنزیم های تجاری آلکالاز و فلاورزایم و به نسبت 1 درصد آنزیم به پروتئین نمونه اولیه، در درجه حرارت 50 درجه سانتی گراد تولید شد. نتایج نشان که با افزایش زمان هیدرولیز میزان بازیافت پروتئینی و درجه هیدرولیز افزایش می یابد (0/05>p) و پروتئین هیدرولیز شده توسط آلکالاز از لحاظ میزان پروتئین، بازیافت نیتروژنی و درجه هیدرولیزبالاتر از سایر پروتئینهای هیدرولیز شده بود (0/05>p). بیشترین فعالیت آنتی اکسیدانی (فعالیت به دام انداختن رادیکال آزاد DPPH، قدرت احیا کنندگی فریک و فعالیت به دام انداختن رادیکال آزاد ABTS) و بیشترین خاصیت ضد میکروبی پروتئین هیدرولیز شده علیه باکتری اشرشیا کلی و استافیلوکوکوس اروئوس در پروتئین هیدرولیز شده توسط آنزیم آلکالاز در زمان ۳۰ دقیقه مشاهده شد(0/05>p). نتایج نشان داد که پروتئین هیدرولیز شده امعاء و احشاء ماهی بیاح دارای فعالیت آنتی اکسیدانی و ضد میکروبی بالاست، که میتواند به عنوان مکمل های پروتئینی در مواد غذایی و در فرمول های رژیم غذایی استفاده شود.
منابع و مأخذ:
اویسی پور، م.، عابدیان کناری، ع. م.، معتمدزادگان، ع.، نظری، ر. م. 1389. بررسی خواص پروتئین های هیدرولیز شده امعاء و احشاء ماهی تون زردباله (Thunnus albacares) با استفاده از آنزیمهای تجاری. نشریه پژوهشهای علوم و صنایع غذایی ایران، دوره6، شماره1، 76-68.
اویسی پور، م.، قمی، م. ر.1387. بیوتکنولوژی در تولید فرآوردههای دریایی. انتشارات دانشگاه آزاد اسلامی واحد تنکابن.
بی نام. 1350. گوشت و فرآوردههای آن، اندازهگیریچربی،مؤسسهیاستاندارد و تحقیقات صنعتی ایران، استاندارد ملی ایران، شماره 742.
شکرپور، ر.، معتمدزادگان، ع.، حسینی پرور، ه.، اویسی پور، م. 1395. بررسی خواص عملکردی پروتئین هیدرولیزشده گوشت کوسه چانه سفید (Carcharhinus dussumieri). نشریه پژوهش و نوآوری در علوم و صنایع غذایی، دوره5، شماره1، 38- 27.
یعقوبزاده، ز.، کابوسی، ح.، پیروی قادیکلایی، ف.، صفری، ر.، فتاحی، ا. 1398. بررسی خواص ضد باکتریایی و آنتی اکسیدانی پروتئین هیدرولیز شده پوست ماهی قزل آلای رنگین کمان(Oncorhynchus mykiss). مجله علمی شیلات ایران. دوره ۲۸، شماره2، 128-117.
Aewsiri, T., Benjakul, S., Visessanguan, W., Eun, J.B., Wierenga, P., Gruppen, H. 2009. Antioxidative activity and emulsifying properties of cuttlefish skin gelatin modified by oxidised phenolic compounds. Food Chemistry, 117: 160–168.
Aleman, A., Gimenez, B., Perez-Santin, E., Gomez-Guillen, M., Montero, P. 2011. Contribution of Leu and Hyp residues to antioxidant and ACE-inhibitory activities of peptide sequences isolated from squid gelatin hydrolysate. Food Chemistry, 125: 334–341.
Benjakul, B. and Morrissey, M.T. 1997. Protein hydrolysates from Pacific whiting solid wastes. Journal of Agricultural and Food Chemistry, 45: 34-24.
Bougatef, A., Hajji, M., Balti, R., Lassoued, I., Triki-Ellouz, Y., Nasri, M. 2009. Antioxidant and free radical-scavenging activities of smooth hound (Mustelus mustelus) muscle protein hydrolysates obtained by gastrointestinal proteases. Food Chemistry, 114: 1198–1205.
Bozin, B., Mimica-Dukic, N., Samojlik, I., Jovin, E. 2007. Antimicrobial and antioxidant properties of rosemary and sage (Rosmarinus officinalis and Salvia officinalis L., Lamiaceae) essential oils.Journal of Agricultural and Food Chemistry, 55: 7879-7885.
Dong, S., Zeng, M., Wang, D., Liu, Z., Zhao, Y., Yang, H. 2008. Antioxidant and biochemical properties of protein hydrolysates prepared from silver carp (Hypophthalmichthys molitrix). Food Chemistry, 107: 1485-1493.
Elavarasan, K., Naveen Kumar, V., Shamasundar, B. A. 2014. Antioxidant and Functional Properties of Fish Protein Hydrolysates from Fresh Water Carp (Catla catla) as Influenced by the Nature of Enzyme. Journal of Food Processing and Preservation, 38 (3): 1207-1214.
Fang, X., Xie, N., Chen, X., Yu, H., Chen, J. 2012. Optimization of antioxidant hydrolysate production from flying squid muscle protein using response surface methodology. Food and Bioproducts Processing, 90: 676-682.
Grisi, T C. and Lira, K G. 2005. Action of nisin and high ph on growth of Staphylococcus aureus and Salmonella in pure culture and the meat of land crab (Ucides cordatus). Brazilian Journal of Microbiology, 36: 151-156.
Horwitz, W. 2010. Official methods of analysis of AOAC International. Volume I, agricultural chemicals, contaminants, drugs/edited by William Horwitz. Gaithersburg (Maryland): AOAC International, 1997.
Hoyle, N.T. and Merritt, J.H. 1994. Quality of fish protein hydrolysates from herring (Clupea harengus). Journal of Food Science; 59(1):76-79.
Jang, H.L., Liceaga, A.M., Yoon, K.Y. 2016. Purification, characterization and stability of an antioxidant peptide derived from sandfish (Arctoscopus japonicas) protein hydrolysates. Journal of Functional Foods, 20: 433–442.
Kelfala Foh, M.B., Amadou, I., Mabel Foh, B., KamaraM.T. and Xia, W. 2010. Functionality and Antioxidant Properties of Tilapia (Oreochromis niloticus) as Influenced by the Degree of Hydrolysis. International Journal of Molecular Science, 11: 1851-1869.
Khantaphant, S., Benjakul, S. and Ghomi, M.R. 2011. The effects of pretreatments on antioxidative activities of protein hydrolysatefrom the muscle of brownstripe red snapper (Lutjanus vitta). Food Science and Technology, 44: 1139-1148.
Klompong, V., Benjakul, S., Kantachote, D. and Shahidi, F. 2007. Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chemistry, 102(4): 1317-1327.
Kristinsson, H.G. and Rasco, B.A. 2000. Fish protein hydrolysates: Production, biochemical and functional properties. Critical Reviews in Food Science and Nutrition, 40:43-81.
Morr, C.V., German, B., Kinsella, J.E., Regenstein, J.M., Buren, J.V., Kilara, A., Lewis, B.A. and Mangino, M.E. 1985. A collaborative study to develop a standardized food protein solubility procedure. Journal of Food Science; 50(6):1715-1718.
Nemati, M., Javadian, S.R., Ovissipour, M. and Keshavarz, M. 2012. A study on the properties of alosa (Alosa caspia) by-products protein hydrolysates using commercial enzymes. World Applied Sciences Journal, 18 (7): 950-956.
Nikoo, M., Benjakul, S. and Xu, X. 2015. Antioxidant and cryoprotective effects of Amur sturgeon skin gelatin hydrolysate in unwashed fish mince. Food Chemistry, 181: 295–303.
Nikoo, M., Benjakulc, S., Ehsanid, A., Jing Lib, F.W., Yangb, N., Xue, B., Jina, Z. and Xua, X. 2014. Antioxidant and cryoprotective effects of a tetrapeptide isolated from Amur sturgeon skin gelatin. Journal of Functional Foods, 7: 609–620.
Oosterveer, P. 2008. Governing global fish provisioning: Ownership and management of marine resources. Ocean and Coastal Management, 51: 797–805.
Ovissipour, M., Abedian, A., Motamedzadegan, A., Rasco, B., Safari, R. and Shahiri, H. 2009. The effect of enzymatic hydrolysis time and temperature on the properties of protein hydrolysates from Persian sturgeon (Acipenser persicus) viscera. Food Chemistry, 115: 238–242.
Ovissipour, M., Rasco, B., Shiroodi, S.G., Modanlow, M., Gholami, S. and Nemati, M. 2013. Antioxidant activity of protein hydrolysates from whole anchovy sprat (Clupeonella engrauliformis) prepared using endogenous enzymes and commercial proteases. Journal of the Science of Food and Agriculture, 93(7): 1718–1726.
Rabiei, S., Rezaei, M., Asgharzade, S., Nikoo, M. and Rafieian-Kopaei, M.
Antioxidant and cytotoxic properties of protein hydrolysates obtained from enzymatic hydrolysis of Klunzinger’s mullet (Liza klunzingeri) muscle. Brazilian Journal of Pharmaceutical Sciences. 55:e18304, 1-10.
Ren, J., Zhao, M., Shi, J., Wang, J., Jiang, Y., Cui, Ch., Kakuda, Y. and Jun Xue, S. 2008. Optimization of antioxidant peptide production from grass carp sarcoplasmic protein using response surface methodology. Food Science and Technologyogy, 41: 1624-1632.
Sacchetti, G. 2005. Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods. Food Chemistry, 91: 621-632.
Salampessy, J., Reddy, N., Kailasapathy, K. and Phillips, M. 2015. Functional and potential therapeutic ACE-inhibitory peptides derived from bromelain hydrolysis of trevally proteins. Journal of Functional Foods, 14: 716–725.
Sheih, I., Fang, T., Wu, T. and Lin, P. 2010. Anticancer and antioxidant activities of the peptide fraction from algae protein waste. Journal of Agricultural and Food Chemistry, 58: 1202−1207.
Wu, H.C., Chen, H.M. and Shiau, C.Y. 2003. Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Research International, 36: 949-957.
Yaghoub zadeh, Z., Peyravii Ghadikolaii, F., Kaboosi, H., Safari, R., Fattahi, E. 2020. Antioxidant Activity and Anticancer Effect of Bioactive Peptides from Rainbow Trout (Oncorhynchus mykiss) Skin Hydrolysate, International Journal of Peptide Research and Therapeutics, 26:625–632.
Zhang, M., Mu, T.H. and Sun, M.J. 2014. Purification and identification of antioxidant peptides from sweet potato protein hydrolysates by Alcalase. Journal of Functional Foods, 7: 191–200.
Zhong, S., Ma, Ch., Lin, Y.C. and Luo, Y. 2011. Antioxidant properties of peptide fractions from silver carp (Hypophthalmichthys molitrix) processing by-product protein hydrolysates evaluated by electron spin resonance spectrometry. Food Chemistry, 126: 1636-1642.
_||_