مروری بر مکملهای خوراکی فراویژه درموادغذایی
محورهای موضوعی :
علوم و صنایع غذایی
محدثه لاری پور
1
*
1 - استادیار قارچ شناسی ، دانشکده علوم زیستی ، گروه میکروبیولوژی ، دانشگاه آزاد اسلامی، واحد تهران شمال، تهران، ایران
تاریخ دریافت : 1400/08/08
تاریخ پذیرش : 1400/11/03
تاریخ انتشار : 1400/08/01
کلید واژه:
پروبیوتیک,
پری بیوتیک,
سینبیوتیک,
مکمل خوراکی,
چکیده مقاله :
با توجه به فراگیر شدن تولید و عرضه غذاهای سینبیوتیک یا فرا ویژه لزوم مطالعه و بررسی منابع مختلف استخراج مکملها جهت تولید این محصولات بسیار ضروری است. تحقیقات مختلف تأثیر مثبت این مکملها بر سلامت انسان و پیشگیری و درمان محدوده متنوعی از بیماریها از قبیل دیابت، سرطان، بیماریهای گوارشی و مشکلات کبدی را نشان دادهاند. بررسیها جهت تولید و عرضه مکملهای تجاری همچون اینولین از سالها پیش آغازشده و اکنون سهم مهمی در بازار مواد غذایی سینبیوتیک دارد. اما مکملهای جدید مانند پلیساکاریدهای با منشأ باکتریایی، مخمرها، قارچهای خوراکی و انواع جلبکها با توجه بهصرفه اقتصادی و مزایای بیشمار اثباتشده برای سلامت انسان، عرصه جدیدی در تحقیقات مرتبط با مکملهای سینبیوتیک است. طبق تحقیقات اخیر تغییرات میکروبیوم روده روی تعداد و عملکرد میکروبیوم در قسمتهای دیگر بدن که منجر به بیماریزایی یا ارتقاء سلامت میشود، بسیار مهم است. در مقاله حاضر علاوه بر مرور کلی پروبیوتیکها و پریبیوتیکها و سینبیوتیکها مروری جامع بر انواع مکملهای پریبیوتیک با منشأ بیولوژیک مختلف شده است.
چکیده انگلیسی:
Due to the widespread production and supply of synbiotic or functional foods, it is necessary to study and study the various sources of supplement extraction to produce these products. Various studies have shown the positive effect of these supplements on human health and the prevention and treatment of a variety of diseases such as diabetes, cancer, gastrointestinal disorders, liver problems, etc. Research into the production and supply of commercial supplements such as inulin has been underway for many years and now has a significant share of the synbiotic food market. But new supplements such as the use of bacterial polysaccharides, yeasts, edible fungi, and algae are a new area of research in synbiotic supplements due to their economic benefits and numerous proven benefits to human health. Changes in the gut microbiome affect the number and function of the microbiome in other parts of the body, leading to disease or health promotion. In the present article, in addition to an overview of probiotics and prebiotics and synbiotics, a comprehensive overview of various prebiotic supplements with different biological origins has been provided.
منابع و مأخذ:
Abdo, A.A.A., Zhang, C., Lin, Y., Liang, X., Kaddour, B., Wu, Q. et al. (2021). Xylo-oligosaccharides ameliorate high cholesterol diet induced hypercholesterolemia and modulate sterol excretion and gut microbiota in hamsters. Journal of Functional Foods, 77:104334.
Abdolalipour, , Mahooti, M., Gorji A., Ghaemi, A. (2020). Synergistic Therapeutic Effects of Probiotic Lactobacillus casei TD-2 Consumption on GM-CSF-Induced Immune Responses in a Murine Model of Cervical Cancer. Nutrition and Cancer, 26:1-11.
Abenavoli, L., Scarpellini, E., Rouabhia, S., Balsano, C. and Luzza, F. (2013). Probiotics in non-alcoholic fatty liver disease: which and when. Annals of hepatology, 12(3): 357-363.
Abrams, S.A., Hawthorne, K.M., Aliu, O., Hicks, P.D., Chen, Z. and Griffin, I.J. (2007). An inulin-type fructan enhances calciumabsorption primarily via an effect on colonic absorption in humans. The Journal of Nutrition, 137(10); 2208–2212.
Abu-Rezq, T.S., Al-Hooti, S. and Jacob, D.A. (2010). Optimum culture conditions required for the locally isolated Dunaliella salina. Journal of Algal Biomass Utilization, 1(2): 12–19.
Al-Qaysi1 S.A.S., Al-Haideri1, H., Al-Shimmary, S.M., Abdulhameed, J. M., Alajrawy, O.I., Al-Halbosiy, M.M. et al. (2021). Bioactive Levan-Type Exopolysaccharide Produced by Pantoea agglomerans ZMR7: Characterization and Optimization for Enhanced Production. Journal of Microbiology and Biotechnology, 31(5): 696–704.
Anandharaj, M., Sivasankari, B. and Parveen Rani, R. (2014). Effects of probiotics, prebiotics, and synbiotics on hypercholesterolemia: a review. Chinese Journal of Biology. 572754.
Anderson, J.W., Allgood, L.D., Lawrence, A., Altringer, L.A., Jerdack, G.R., Hengehold, D.A. et al. (2000). Cholesterol-lowering effects of psyllium intake adjunctive to diet therapy in men and women with hypercholesterolemia: meta-analysis of 8 controlled trials. The American journal of Clinical Nutrition, 71(2): 472–479.
Araújo, E.A., Carvalho, A.F. de, Leandro, E.S., Furtado, M.M. and Moraes, C.A. de. (2010). Development of a symbiotic cottage cheese added with Lactobacillus delbrueckii UFV H2b20 and inulin. Journal of Functional Foods, 2(1): 85–89.
Arunachalam, K., Gill, H.S. and Chandra, R.K. (2000). Enhancement of natural immune function by dietary consumption of Bifidobacterium lactis (HN019). European Journal of Clinical Nutrition, 54(3): 263–267.
Ashaolu, T. J., Ashaolu, J.O., Adeyeye, S.A.O. (2021). Fermentation of prebiotics by human colonic microbiota in vitro and short-chain fatty acids production: a critical review. Journal of Applied Microbiology, 130(3): 677-687.
Aween, M.M., Hassan, Z., Muhialdin, B.J., Eljamel, Y.A., Al-Mabrok, A.S.W., Lani, M.N. (2012). Antibacterial activity of Lactobacillus acidophilus strains isolated from honey marketed in Malaysia against selected multiple antibiotic resistant (MAR) Gram-positive bacteria. Journal of Food Science, 77(7): 364-371.
Bahrudin, M.F., Rani, R.A., Tamil, A.M., Mokhtar, N.M. and Ali, R.A.R.(2020). Effectiveness of sterilized symbiotic drink containing Lactobacillus helveticus comparable to probiotic alone in patients with constipation-predominant irritable bowel syndrome. Digestive Diseases and Sciences, 65(2): 541–549.
Battistini, C., Gullón, B., Ichimura, E.S., Gomes, A.M.P., Ribeiro, E.P., Kunigk, L. et al. (2018). Development and characterization of an innovative synbiotic fermented beverage based on vegetable soybean. Brazilian Journal of Microbiology, 49: 303–309.
Beheshtipour, H., Mortazavian, A.M., Mohammadi, R., Sohrabvandi, S. and Khosravi‐Darani, K. (2013). Supplementation of Spirulina platensis and Chlorella vulgaris algae into probiotic fermented milks. Comprehensive Reviews in Food Science and Food Safety, 12(2): 144–154.
Berberoglu, H., Gomez, P.S. and Pilon, L. (2009). Radiation characteristics of Botryococcus braunii, Chlorococcum littorale, and Chlorella used for CO2 fixation and biofuel production. Journal of Quantitative Spectroscopy and Radiative Transfer, 110(17): 1879–1893.
Bhowmik, D., Dubey, J. and Mehra, S. (2009). Probiotic efficiency of Spirulina platensis-stimulating growth of lactic acid bacteria. World Journal of Dairy and Food Sciences, 4(2): 160–163.
Brouns, F., Theuwissen, E., Adam, A., Bell, M., Berger, A. and Mensink, R.P. (2012). Cholesterol-lowering properties of different pectin types in mildly hyper-cholesterolemic men and women. European Journal of Clinical Nutrition, 66(5): 591–599.
Brown, G.D. and Gordon, S. (2003). Fungal β-glucans and mammalian immunity. Immunity, 19(3): 311–315.
Buriti, F.C.A., Cardarelli, R. and Saad, S.M.I. (2007). Biopreservation by Lactobacillus paracasei in coculture with Streptococcus thermophilus in potentially probiotic and synbiotic fresh cream cheeses. Journal of Food Protection, 70(1): 228–235.
Çabuk, B. and Harsa, Ş. (2015). Whey protein-pullulan (WP/Pullulan) polymer blend for preservation of viability of Lactobacillus acidophilus. Drying Technology, 33(10): 1223–1233.
Caplan, M.S. and Jilling, T. (2000). Neonatal necrotizing enterocolitis: possible role of probiotic supplementation. Journal of Pediatric Gastroenterology and Nutrition, 30: S18–S22.
Carlson, J.L., Erickson, J.M., Lloyd, B.B. and Slavin, J.L. (2018). Health effects and sources of prebiotic dietary fiber. Current Developments in Nutrition, 2(3): nzy005.
Carmo, F.L.R. do, Rabah, H., Huang, S., Gaucher, F., Deplanche, M., Dutertre, S., Jardin, J. et al. (2017). Propionibacterium freudenreichii surface protein SlpB is involved in adhesion to intestinal HT-29 cells. Frontiers in Microbiology, 8:1033.
Cencic, A. and Chingwaru, W.(2010). The role of functional foods, nutraceuticals, and food supplements in intestinal health. Nutrients, 2(6): 611–625.
Chaiyasut, C., Kesika, P., Sirilun, S., Peerajan, S. and Sivamaruthi, B.S. (2018). Formulation and Evaluation of Lactic Acid Bacteria Fermented Brassica juncea (Mustard Greens) Pickle with Cholesterol Lowering Property. Journal of Applied Pharmaceutical Science, 8(04): 33–42.
Chlebowska-Śmigiel, A., Kycia, K., Neffe-Skocińska, K., Kieliszek, M., Gniewosz, M. and Kołożyn-Krajewska, D. (2019). Effect of pullulan on physicochemical, microbiological, and sensory quality of yogurts. Current Pharmaceutical Biotechnology:20(6), 489–496.
Choi, C.-R., Kim, E.-K., Kim, Y.-S., Je, J.-Y., An, S.-H., Lee, J.D. et al. (2012). Chitooligosaccharides decreases plasma lipid levels in healthy men. International Journal of Food Sciences and Nutrition, 63(1): 103–106.
Davoren, M.J., Liu, J., Castellanos, J., Rodríguez-Malavé, N.I. and Schiestl, R.H. (2019).A novel probiotic, Lactobacillus johnsonii 456, resists acid and can persist in the human gut beyond the initial ingestion period. Gut Microbes, 10(4): 458–480.
Devillé, C., Damas, J., Forget, P., Dandrifosse, G. and Peulen, O. (2004). Laminarin in the dietary fibre concept. Journal of the Science of Food and Agriculture, 84(9): 1030–1038.
Dhiman, S., and Gunjan M. (2021). Pullulan: a bioactive fungal exopolysaccharide with broad spectrum of applications for human welfare. Fungi Bio-Prospects in Sustainable Agriculture, Environment and Nano-technology, Academic Press, 187-206.
Ducros, V., Arnaud, J., Tahiri, M., Coudray, C., Bornet, F., Bouteloup-Demange, C. et al. (2005). Influence of short-chain fructo-oligosaccharides (sc-FOS) on absorption of Cu, Zn, and Se in healthy postmenopausal women. Journal of the American College of Nutrition, 24(1): 30–37.
Ettinger, G., MacDonald, K., Reid, G. and Burton, J.P. (2014). The influence of the human microbiome and probiotics on cardiovascular health. Gut Microbes, 5(6): 719–728.
Figueroa‐González, I., Quijano, G., Ramirez, G. and Cruz‐Guerrero, A. (2011). Probiotics and prebiotics—perspectives and challenges. Journal of The Science of Food and Agriculture, 91(8): 1341–1348.
Gibson, G.R., Probert, H.M., Loo, J. Van, Rastall, R.A. and Roberfroid, M.B. (2004). Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutrition Rsearch Reviews, 17(2): 259–275.
Gu, Q., Zhang, C., Song, D., Li, P. and Zhu, X. (2015). Enhancing vitamin B12 content in soy-yogurt by Lactobacillus reuteri. International Journal of Food Microbiology, 206: 56–59.
Gulewicz, P., Ciesiołka, D., Frias, J., Vidal-Valverde, C., Frejnagel, S., Trojanowska, K. et al. (2000). Simple method of isolation and purification of α-galactosides from legumes. Journal of Agricultural and Food Chemistry, 48(8): 3120–3123.
Gupta, P., Andrew, H., Kirschner, B.S. and Guandalini, S. (2000). Is Lactobacillus GG helpful in children with Crohn’s disease? Results of a preliminary, open-label study. Journal of Pediatric Gastroenterology and Nutrition, 31(4): 453–457.
Gupta, S., Gupta, C., Garg, A.P. and Prakash, D. (2017). Prebiotic efficiency of blue green algae on probiotics microorganisms. Journal of Microbiology & Experimentation, 4(4): 00120.
Hashmi, A., Naeem, N., Farooq, Z., Masood, S., Iqbal, S. and Naseer, R. (2016). Effect of prebiotic galacto-oligosaccharides on serum lipid profile of hypercholesterolemics. Probiotics and Antimicrobial Proteins, 8(1): 19–30.
Hong, L., Kim, W.-S., Lee, S.-M., Kang, S.-K., Choi, Y.-J. and Cho, C.-S. (2019). Pullulan nanoparticles as prebiotics enhance the antibacterial properties of Lactobacillus plantarum through the induction of mild stress in probiotics. Frontiers in Microbiology, 10:142.
Hongpattarakere, T., Cherntong, N., Wichienchot, S., Kolida, S. and Rastall, R.A. (2012). In vitro prebiotic evaluation of exopolysaccharides produced by marine isolated lactic acid bacteria. Carbohydrate Polymers, 87(1): 846–852.
Infusino, F., Marazzato, M., Mancone, M., Fedele, F., Mastroianni, C.M., Severino, P. et al. (2020). Diet supplementation, probiotics, and nutraceuticals in SARS-CoV-2 infection: a scoping review. Nutrients, 12(6):1718.
Johnstone, N., Milesi, C., Burn, O., Bogert, B. van den, Nauta, A., Hart, K. et al. (2021). Anxiolytic effects of a galacto-oligosaccharides prebiotic in healthy females (18–25 years) with corresponding changes in gut bacterial composition. Scientific Reports, 11(1): 1–11.
Joyce, S.A., Kamil, A., Fleige, L. and Gahan, C.G.M. (2019). The cholesterol-lowering effect of oats and oat beta glucan: modes of action and potential role of bile acids and the microbiome. Frontiers in Nutrition, 6:171.
Kaufmann, S.H.E. (2008) Immunology’s foundation: the 100-year anniversary of the Nobel Prize to Paul Ehrlich and Elie Metchnikoff. Nature Immunology, 9(7): 705–712.
Khatiwada, J., Verghese, M., Davis, S., Williams L.L. (2011). Green Tea, Phytic Acid, and Inositol in Combination Reduced the Incidence of Azoxymethane-Induced Colon Tumors in Fisher 344 Male Rats. Journal of Medicinal Food, 14(11).
Klochkova, T.A., Sung-Ho, K., Cho, G.Y., Pueshel, C.M., West, J.A., Kim, G.H. (2006). Biology of a terrestrial green alga, Chlorococcum (Chlorococcales, Chlorophyta), collected from the Miruksazi stupa in Korea. Phycologia, 45(3): 349-358.
Kou, T., Wang, Q., Cai, J., Song, J., Du, B., Zhao, K. et al. (2017). Effect of soybean protein on blood pressure in postmenopausal women: a meta-analysis of randomized controlled trials. Food and Function, 8(8): 2663–2671.
Kuo, S. M. (2013). The interplay between fiber and the intestinal microbiome in the inflammatory response. Advances in Nutrition, 4(1): 16–28.
Larypoor, M., Bayat, M., Zuhair, M.H., Akhavan Sepahy, A. and Amanlou, M. (2013). Evaluation of the number of CD4(+) CD25(+) FoxP3(+) treg cells in normal mice exposed to AFB1 and treated with aged garlic extract. Cell Journal, 15(1): 37–44.
Larypoor, M., Shams, K. and Hatami, F. (2021). The effect of Lactobacillus plantarum as a probiotic supplement on intestinal cancer under the influence of fatty foods. Applied Microbiology in Food Industry, Acceptance November 1400 (In Press).
Li, P., Zhou, Q. and Gu, Q. (2016) Complete genome sequence of Lactobacillus plantarum LZ227, a potential probiotic strain producing B-group vitamins. Journal of Biotechnology, 234: 66–70.
Liong, M. T. (2007). Probiotics: a critical review of their potential role as antihypertensives, immune modulators, hypocholesterolemics, and perimenopausal treatments. Nutrition Reviews, 65(7): 316–328.
Liu, C., Kolida, S., Charalampopoulos, D. and Rastall, R.A. (2020). An evaluation of the prebiotic potential of microbial levans from Erwinia sp. 10119. Journal of Functional Foods, 64: 103668.
Liu, J., Kandasamy, S., Zhang, J., Kirby, C.W., Karakach, T., Hafting, J. et al. (2015). Prebiotic effects of diet supplemented with the cultivated red seaweed Chondrus crispus or with fructo-oligo-saccharide on host immunity, colonic microbiota and gut microbial metabolites. BMC Complementary and Alternative Medicine, 15(1): 1–12.
Lordan, S., Ross, R.P. and Stanton, C. (2011). Marine bioactives as functional food ingredients: potential to reduce the incidence of chronic diseases. Marine Drugs, 9(6): 1056–1100.
Ma, E.L., Choi, Y.J., Choi, J., Pothoulakis, C., Rhee, S.H. and Im, E. (2010).The anticancer effect of probiotic Bacillus polyfermenticus on human colon cancer cells is mediated through ErbB2 and ErbB3 inhibition. International Journal of Cancer, 127(4): 780–790.
Manning, T.S. and Gibson, G.R. (2004). Microbial-gut interactions in health and disease. Prebiotics. Best Pract. Res. Clin. Gastroenterol, 18(2): 287–298.
Markowiak, P. and Śliżewska, K. (2017).Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients, 9(9): 1021.
Mata, T.M., Martins, A.A. and Caetano, N.S. (2010). Microalgae for biodiesel production and other applications: a review. Renewable and Sustainable Energy Reviews, 14(1): 217–232.
Michałkiewicz, J., Krotkiewski, M., Gackowska, L., Wyszomirska-Gołda, M., Helmin-Basa, A., Dzierżanowska D., et al. (2003). Immunomodulatory effects of lactic acid bacteria on human peripheral blood mononuclear cells. Microbial Ecology in Health and Disease, 15: 185-192.
Mishra, A. and Jha, B. (2009). Isolation and characterization of extracellular polymeric substances from micro-algae Dunaliella salina under salt stress. Bioresource Technology, 100(13): 3382–3386.
Mohammadi, M., Kazeroni, N. and Baboli, M.J. (2015). Fatty acid composition of the marine micro alga Tetraselmis chuii Butcher in response to culture conditions. Journal of Algal Biomass Utilazation, 6(2): 49–55.
Mudgil, D., Barak, S. and Khatkar, B.S. (2014). Guar gum: processing, properties and food applications—a review. Journal of Food Science and Technology, 51(3): 409–418.
Niccolai, , Bažec, K., Rodolfi, L., Biondi, N., Zlatić, E., Jamnik, P., Tredici, M. R. (2020). Lactic Acid Fermentation of Arthrospira platensis(Spirulina) in a Vegetal Soybean Drink for Developing New Functional Lactose-Free Beverages. Frontiers in Microbiology, 11.
NithyaBalaSundari, S., Nivedita, V., Chakravarthy, M., Nadda, A.K.(Editor), Srisowmeya, G., Antony, U., Dev, G.N. (2020). Characterization of microbial polysaccharides and prebiotic enrichment of wheat bread with pullulan. Lebensmittel-Wissenschaft Technologie, 122, 109002.
Nowak, R., Nowacka-Jechalke, N., Juda, M. and Malm, A. (2018).The preliminary study of prebiotic potential of Polish wild mushroom polysaccharides: The stimulation effect on Lactobacillus strains growth. European Journal of Nutrition, 57(4): 1511–1521.
O’Sullivan, L., Murphy, B., McLoughlin, P., Duggan, P., Lawlor, P.G., Hughes, H. et al. (2010). Prebiotics from marine macroalgae for human and animal health applications. Marine Drugs, 8(7): 2038–2064.
Oliva-Neto, P. De, Oliveira, S.S., Zilioli, E. and Bellini, M.Z. (2016).Yeasts as potential source for prebiotic β-glucan: Role in human nutrition and health. Probiotics and Prebiotics in Human Nutrition and Health InTech, 244–331.
Ooi, L. G. and Liong, M. T. (2010). Cholesterol-lowering effects of probiotics and prebiotics: a review of in vivo and in vitro International Journal of Molecular Sciences, 11(6): 2499–2522.
Pan, L., Han, Y. and Zhou, Z. (2020). In vitro prebiotic activities of exopolysaccharide from Leuconostoc pseudomesenteroides XG5 and its effect on the gut microbiota of mice. Journal of Functional Foods, 67: 103853.
Panesar, P.S., Panesar, R., Singh, R.S., Kennedy, J.F. and Kumar, H. (2006). Microbial production, immobilization and applications of β‐D‐ Journal of Chemical Technology and Biotechnology: International Research in Process. Environmental and Clean Technology, 81(4): 530–543.
Patro-Gołąb, B. and Szajewska, H. (2019). Systematic Review with Meta-Analysis: Lactobacillus reuteri DSM 17938 for Treating Acute Gastroenteritis in Children. An Update. , 11(11): 2762.
Peña, A.S. (2007). Intestinal flora, probiotics, prebiotics, synbiotics and novel foods. Revista Española de Enfermedades Digestivas, 99(11): 653.
Peredo-Lovillo, A., Romero-Luna, H.E. and Jiménez-Fernández, M. (2020). Health promoting microbial metabolites produced by gut microbiota after prebiotics metabolism. Food Research International, 136: 109473.
Pinchuk, I.V., Bressollier,, Verneuil, B., Fenet, B., Sorokulova, I. B., Mégraud F., Urdaci M.C. (2001). In Vitro Anti-Helicobacter pylori activity of the Probiotic Strain Bacillus subtilis 3 Is Due to Secretion of Antibiotics. Antimicrobial Agents and Chemotherapy, 45( 11): 3156-3161.
Pokusaeva, K., Fitzgerald, G.F. and Sinderen, D. van. (2011). Carbohydrate metabolism in Bifidobacteria. Genes and Nutrition, 6(3): 285–306.
Pompei, A., Cordisco, L., Amaretti, A., Zanoni, S., Matteuzzi, D. and Rossi, M. (2007). Folate production by bifidobacteria as a potential probiotic property. Applied and Environmental Microbiology, 73(1): 179–185.
Pontier-Bres R., Rampal P., Peyron J-F., Munro P., Lemichez E and Czerucka D.(2015). The Saccharomyces boulardii CNCM I-745 strain shows protective effects against the anthracisLT Toxin. Toxins, 7: 4455-4467.
Puupponen-Pimiä, R., Aura, A.-M., Oksman-Caldentey, K.-M., Myllärinen, P., Saarela, M., Mattila-Sandholm, T. et al. (2002). Development of functional ingredients for gut health.Trends in Food Science and Technology, 13(1): 3–11.
Reid, G., Kim, S.O. and Köhler, G.A. (2006) Selecting, testing and understanding probiotic microorganisms. FEMS Immunology and Medical Microbiology, 46(2): 149–157.
Roos, N.M. De and Katan, M.B. (2000). Effects of probiotic bacteria on diarrhea, lipid metabolism, and carcinogenesis: a review of papers published between 1988 and 1998. The American Journal of Clinical Nutrition, 71(2):405–411.
Russo, P., López, P., Capozzi, V., Palencia, P.F. De, Dueñas, M.T., Spano, G. and Fiocco, D. (2012). Beta-glucans improve growth, viability and colonization of probiotic microorganisms. International Journal of Molecular Sciences, 13(5): 6026–6039.
Saraee, F., Amini, K., Hadadi, A., Larypoor, M. (2021). Application of Saccharomyces cerevisiae isolated from industrial effluent for zinc biosorption and zinc-enriched SCP production for human and animal, Food Science and Technology.
Sawangwan, T., Wansanit, W., Pattani, L. and Noysang, C. (2018). Study of prebiotic properties from edible mushroom extraction. Agriculture and Natural Resources, 52(6): 519–524.
Schiavi, E., Barletta, B., Butteroni, C., Corinti, S., Boirivant, M. and Felice, G. Di. (2011). Oral therapeutic administration of a probiotic mixture suppresses established Th2 responses and systemic anaphylaxis in a murine model of food allergy. Allergy, 66(4): 499–508.
Shams, K., Larypoor, M. and Salimian, J. (2021). The immunomodulatory effects of Candida albicans isolated from the normal gastrointestinal microbiome of the elderly on colorectal cancer. Medical Oncology, 38(12): 1–12.
Shu, Q. and Gill, H.S. (2002). Immune protection mediated by the probiotic Lactobacillus rhamnosus HN001 (DR20TM) against Escherichia coli O157:H7 infection in mice. FEMS Immunology and Medical Microbiology, 34(1): 59–64.
Simeoni, U., Berger, B., Junick, J., Blaut, M., Pecquet, S., Rezzonico, E. et al. (2016). Gut microbiota analysis reveals a marked shift to bifidobacteria by a starter infant formula containing a synbiotic of bovine milk‐derived oligosaccharides and Bifidobacterium animalis lactis CNCM I‐3446. Environmental Microbiology, 18(7), 2185-2195.
Skjånes, K., Lindblad, P. and Muller, J. (2007). BioCO2–A multidisciplinary, biological approach using solar energy to capture CO2 while producing H2 and high value products. Biomolecular Engineering, 24(4): 405–413.
Skrzydło-Radomańska, B., Prozorow-Król, B., Cichoż-Lach, H., Majsiak, E., Bierła, J.B., Kosikowski, W. et al. (2020). The effectiveness of synbiotic preparation containing Lactobacillus and Bifidobacterium probiotic strains and short chain fructooligosaccharides in patients with diarrhea Predominant Irritable Bowel Syndrome—A randomized double-blind, placebo-controlled. Nutrients, 12(7): 1999.
Souza Oliveira, R.P. de, Perego, P., Oliveira, M.N. de and Converti, A. (2011). Effect of inulin as prebiotic and synbiotic interactions between probiotics to improve fermented milk firmness. Journal of Food Engineering, 107(1): 36–40.
Szajewska, H. and Hojsak, I. (2020). Health benefits of Lactobacillus rhamnosus GG and Bifidobacterium animalis subspecies lactis BB-12 in children. Postgraduate Medicine, 132(5): 441–451.
Szajewska, H., Kotowska, M., Mrukowicz, J.Z., Arma, M. and Mikolajczyk, W. (2001). Efficacy of Lactobacillus GG in prevention of nosocomial diarrhea in infants. The Journal of Pediatrics, 138(3): 361–365.
Tamime, A.Y., Saarela, M., Sondergaard, A.K., Mistry, V. V and Shah, N.P. (2005). Production and maintenance of viability of probiotic microorganisms in dairy products. Probiotic Dairy Products, 3: 39–63.
Wang, H., Chen, G., Li, X., Zheng, F. and Zeng, X. (2020).Yeast β-glucan, a potential prebiotic, showed a similar probiotic activity to inulin, Food and Function.11(12): 10386–10396.
Wang, S., Xiao, Y., Tian, F., Zhao, J., Zhang, H., Zhai, Q. et al. (2020). Rational use of prebiotics for gut microbiota alterations: Specific bacterial phylotypes and related mechanisms. Journal of Functional Foods, 66: 103838.
Xu, J., Wang, R., Zhang, H., Wu, J., Zhu, L. and Zhan, X. (2021). In vitro assessment of prebiotic properties of oligosaccharides derived from four microbial polysaccharides. Lebensmittel-Wissenschaft Technologie, 147: 111544.
_||_
Abdo, A.A.A., Zhang, C., Lin, Y., Liang, X., Kaddour, B., Wu, Q. et al. (2021). Xylo-oligosaccharides ameliorate high cholesterol diet induced hypercholesterolemia and modulate sterol excretion and gut microbiota in hamsters. Journal of Functional Foods, 77:104334.
Abdolalipour, , Mahooti, M., Gorji A., Ghaemi, A. (2020). Synergistic Therapeutic Effects of Probiotic Lactobacillus casei TD-2 Consumption on GM-CSF-Induced Immune Responses in a Murine Model of Cervical Cancer. Nutrition and Cancer, 26:1-11.
Abenavoli, L., Scarpellini, E., Rouabhia, S., Balsano, C. and Luzza, F. (2013). Probiotics in non-alcoholic fatty liver disease: which and when. Annals of hepatology, 12(3): 357-363.
Abrams, S.A., Hawthorne, K.M., Aliu, O., Hicks, P.D., Chen, Z. and Griffin, I.J. (2007). An inulin-type fructan enhances calciumabsorption primarily via an effect on colonic absorption in humans. The Journal of Nutrition, 137(10); 2208–2212.
Abu-Rezq, T.S., Al-Hooti, S. and Jacob, D.A. (2010). Optimum culture conditions required for the locally isolated Dunaliella salina. Journal of Algal Biomass Utilization, 1(2): 12–19.
Al-Qaysi1 S.A.S., Al-Haideri1, H., Al-Shimmary, S.M., Abdulhameed, J. M., Alajrawy, O.I., Al-Halbosiy, M.M. et al. (2021). Bioactive Levan-Type Exopolysaccharide Produced by Pantoea agglomerans ZMR7: Characterization and Optimization for Enhanced Production. Journal of Microbiology and Biotechnology, 31(5): 696–704.
Anandharaj, M., Sivasankari, B. and Parveen Rani, R. (2014). Effects of probiotics, prebiotics, and synbiotics on hypercholesterolemia: a review. Chinese Journal of Biology. 572754.
Anderson, J.W., Allgood, L.D., Lawrence, A., Altringer, L.A., Jerdack, G.R., Hengehold, D.A. et al. (2000). Cholesterol-lowering effects of psyllium intake adjunctive to diet therapy in men and women with hypercholesterolemia: meta-analysis of 8 controlled trials. The American journal of Clinical Nutrition, 71(2): 472–479.
Araújo, E.A., Carvalho, A.F. de, Leandro, E.S., Furtado, M.M. and Moraes, C.A. de. (2010). Development of a symbiotic cottage cheese added with Lactobacillus delbrueckii UFV H2b20 and inulin. Journal of Functional Foods, 2(1): 85–89.
Arunachalam, K., Gill, H.S. and Chandra, R.K. (2000). Enhancement of natural immune function by dietary consumption of Bifidobacterium lactis (HN019). European Journal of Clinical Nutrition, 54(3): 263–267.
Ashaolu, T. J., Ashaolu, J.O., Adeyeye, S.A.O. (2021). Fermentation of prebiotics by human colonic microbiota in vitro and short-chain fatty acids production: a critical review. Journal of Applied Microbiology, 130(3): 677-687.
Aween, M.M., Hassan, Z., Muhialdin, B.J., Eljamel, Y.A., Al-Mabrok, A.S.W., Lani, M.N. (2012). Antibacterial activity of Lactobacillus acidophilus strains isolated from honey marketed in Malaysia against selected multiple antibiotic resistant (MAR) Gram-positive bacteria. Journal of Food Science, 77(7): 364-371.
Bahrudin, M.F., Rani, R.A., Tamil, A.M., Mokhtar, N.M. and Ali, R.A.R.(2020). Effectiveness of sterilized symbiotic drink containing Lactobacillus helveticus comparable to probiotic alone in patients with constipation-predominant irritable bowel syndrome. Digestive Diseases and Sciences, 65(2): 541–549.
Battistini, C., Gullón, B., Ichimura, E.S., Gomes, A.M.P., Ribeiro, E.P., Kunigk, L. et al. (2018). Development and characterization of an innovative synbiotic fermented beverage based on vegetable soybean. Brazilian Journal of Microbiology, 49: 303–309.
Beheshtipour, H., Mortazavian, A.M., Mohammadi, R., Sohrabvandi, S. and Khosravi‐Darani, K. (2013). Supplementation of Spirulina platensis and Chlorella vulgaris algae into probiotic fermented milks. Comprehensive Reviews in Food Science and Food Safety, 12(2): 144–154.
Berberoglu, H., Gomez, P.S. and Pilon, L. (2009). Radiation characteristics of Botryococcus braunii, Chlorococcum littorale, and Chlorella used for CO2 fixation and biofuel production. Journal of Quantitative Spectroscopy and Radiative Transfer, 110(17): 1879–1893.
Bhowmik, D., Dubey, J. and Mehra, S. (2009). Probiotic efficiency of Spirulina platensis-stimulating growth of lactic acid bacteria. World Journal of Dairy and Food Sciences, 4(2): 160–163.
Brouns, F., Theuwissen, E., Adam, A., Bell, M., Berger, A. and Mensink, R.P. (2012). Cholesterol-lowering properties of different pectin types in mildly hyper-cholesterolemic men and women. European Journal of Clinical Nutrition, 66(5): 591–599.
Brown, G.D. and Gordon, S. (2003). Fungal β-glucans and mammalian immunity. Immunity, 19(3): 311–315.
Buriti, F.C.A., Cardarelli, R. and Saad, S.M.I. (2007). Biopreservation by Lactobacillus paracasei in coculture with Streptococcus thermophilus in potentially probiotic and synbiotic fresh cream cheeses. Journal of Food Protection, 70(1): 228–235.
Çabuk, B. and Harsa, Ş. (2015). Whey protein-pullulan (WP/Pullulan) polymer blend for preservation of viability of Lactobacillus acidophilus. Drying Technology, 33(10): 1223–1233.
Caplan, M.S. and Jilling, T. (2000). Neonatal necrotizing enterocolitis: possible role of probiotic supplementation. Journal of Pediatric Gastroenterology and Nutrition, 30: S18–S22.
Carlson, J.L., Erickson, J.M., Lloyd, B.B. and Slavin, J.L. (2018). Health effects and sources of prebiotic dietary fiber. Current Developments in Nutrition, 2(3): nzy005.
Carmo, F.L.R. do, Rabah, H., Huang, S., Gaucher, F., Deplanche, M., Dutertre, S., Jardin, J. et al. (2017). Propionibacterium freudenreichii surface protein SlpB is involved in adhesion to intestinal HT-29 cells. Frontiers in Microbiology, 8:1033.
Cencic, A. and Chingwaru, W.(2010). The role of functional foods, nutraceuticals, and food supplements in intestinal health. Nutrients, 2(6): 611–625.
Chaiyasut, C., Kesika, P., Sirilun, S., Peerajan, S. and Sivamaruthi, B.S. (2018). Formulation and Evaluation of Lactic Acid Bacteria Fermented Brassica juncea (Mustard Greens) Pickle with Cholesterol Lowering Property. Journal of Applied Pharmaceutical Science, 8(04): 33–42.
Chlebowska-Śmigiel, A., Kycia, K., Neffe-Skocińska, K., Kieliszek, M., Gniewosz, M. and Kołożyn-Krajewska, D. (2019). Effect of pullulan on physicochemical, microbiological, and sensory quality of yogurts. Current Pharmaceutical Biotechnology:20(6), 489–496.
Choi, C.-R., Kim, E.-K., Kim, Y.-S., Je, J.-Y., An, S.-H., Lee, J.D. et al. (2012). Chitooligosaccharides decreases plasma lipid levels in healthy men. International Journal of Food Sciences and Nutrition, 63(1): 103–106.
Davoren, M.J., Liu, J., Castellanos, J., Rodríguez-Malavé, N.I. and Schiestl, R.H. (2019).A novel probiotic, Lactobacillus johnsonii 456, resists acid and can persist in the human gut beyond the initial ingestion period. Gut Microbes, 10(4): 458–480.
Devillé, C., Damas, J., Forget, P., Dandrifosse, G. and Peulen, O. (2004). Laminarin in the dietary fibre concept. Journal of the Science of Food and Agriculture, 84(9): 1030–1038.
Dhiman, S., and Gunjan M. (2021). Pullulan: a bioactive fungal exopolysaccharide with broad spectrum of applications for human welfare. Fungi Bio-Prospects in Sustainable Agriculture, Environment and Nano-technology, Academic Press, 187-206.
Ducros, V., Arnaud, J., Tahiri, M., Coudray, C., Bornet, F., Bouteloup-Demange, C. et al. (2005). Influence of short-chain fructo-oligosaccharides (sc-FOS) on absorption of Cu, Zn, and Se in healthy postmenopausal women. Journal of the American College of Nutrition, 24(1): 30–37.
Ettinger, G., MacDonald, K., Reid, G. and Burton, J.P. (2014). The influence of the human microbiome and probiotics on cardiovascular health. Gut Microbes, 5(6): 719–728.
Figueroa‐González, I., Quijano, G., Ramirez, G. and Cruz‐Guerrero, A. (2011). Probiotics and prebiotics—perspectives and challenges. Journal of The Science of Food and Agriculture, 91(8): 1341–1348.
Gibson, G.R., Probert, H.M., Loo, J. Van, Rastall, R.A. and Roberfroid, M.B. (2004). Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutrition Rsearch Reviews, 17(2): 259–275.
Gu, Q., Zhang, C., Song, D., Li, P. and Zhu, X. (2015). Enhancing vitamin B12 content in soy-yogurt by Lactobacillus reuteri. International Journal of Food Microbiology, 206: 56–59.
Gulewicz, P., Ciesiołka, D., Frias, J., Vidal-Valverde, C., Frejnagel, S., Trojanowska, K. et al. (2000). Simple method of isolation and purification of α-galactosides from legumes. Journal of Agricultural and Food Chemistry, 48(8): 3120–3123.
Gupta, P., Andrew, H., Kirschner, B.S. and Guandalini, S. (2000). Is Lactobacillus GG helpful in children with Crohn’s disease? Results of a preliminary, open-label study. Journal of Pediatric Gastroenterology and Nutrition, 31(4): 453–457.
Gupta, S., Gupta, C., Garg, A.P. and Prakash, D. (2017). Prebiotic efficiency of blue green algae on probiotics microorganisms. Journal of Microbiology & Experimentation, 4(4): 00120.
Hashmi, A., Naeem, N., Farooq, Z., Masood, S., Iqbal, S. and Naseer, R. (2016). Effect of prebiotic galacto-oligosaccharides on serum lipid profile of hypercholesterolemics. Probiotics and Antimicrobial Proteins, 8(1): 19–30.
Hong, L., Kim, W.-S., Lee, S.-M., Kang, S.-K., Choi, Y.-J. and Cho, C.-S. (2019). Pullulan nanoparticles as prebiotics enhance the antibacterial properties of Lactobacillus plantarum through the induction of mild stress in probiotics. Frontiers in Microbiology, 10:142.
Hongpattarakere, T., Cherntong, N., Wichienchot, S., Kolida, S. and Rastall, R.A. (2012). In vitro prebiotic evaluation of exopolysaccharides produced by marine isolated lactic acid bacteria. Carbohydrate Polymers, 87(1): 846–852.
Infusino, F., Marazzato, M., Mancone, M., Fedele, F., Mastroianni, C.M., Severino, P. et al. (2020). Diet supplementation, probiotics, and nutraceuticals in SARS-CoV-2 infection: a scoping review. Nutrients, 12(6):1718.
Johnstone, N., Milesi, C., Burn, O., Bogert, B. van den, Nauta, A., Hart, K. et al. (2021). Anxiolytic effects of a galacto-oligosaccharides prebiotic in healthy females (18–25 years) with corresponding changes in gut bacterial composition. Scientific Reports, 11(1): 1–11.
Joyce, S.A., Kamil, A., Fleige, L. and Gahan, C.G.M. (2019). The cholesterol-lowering effect of oats and oat beta glucan: modes of action and potential role of bile acids and the microbiome. Frontiers in Nutrition, 6:171.
Kaufmann, S.H.E. (2008) Immunology’s foundation: the 100-year anniversary of the Nobel Prize to Paul Ehrlich and Elie Metchnikoff. Nature Immunology, 9(7): 705–712.
Khatiwada, J., Verghese, M., Davis, S., Williams L.L. (2011). Green Tea, Phytic Acid, and Inositol in Combination Reduced the Incidence of Azoxymethane-Induced Colon Tumors in Fisher 344 Male Rats. Journal of Medicinal Food, 14(11).
Klochkova, T.A., Sung-Ho, K., Cho, G.Y., Pueshel, C.M., West, J.A., Kim, G.H. (2006). Biology of a terrestrial green alga, Chlorococcum (Chlorococcales, Chlorophyta), collected from the Miruksazi stupa in Korea. Phycologia, 45(3): 349-358.
Kou, T., Wang, Q., Cai, J., Song, J., Du, B., Zhao, K. et al. (2017). Effect of soybean protein on blood pressure in postmenopausal women: a meta-analysis of randomized controlled trials. Food and Function, 8(8): 2663–2671.
Kuo, S. M. (2013). The interplay between fiber and the intestinal microbiome in the inflammatory response. Advances in Nutrition, 4(1): 16–28.
Larypoor, M., Bayat, M., Zuhair, M.H., Akhavan Sepahy, A. and Amanlou, M. (2013). Evaluation of the number of CD4(+) CD25(+) FoxP3(+) treg cells in normal mice exposed to AFB1 and treated with aged garlic extract. Cell Journal, 15(1): 37–44.
Larypoor, M., Shams, K. and Hatami, F. (2021). The effect of Lactobacillus plantarum as a probiotic supplement on intestinal cancer under the influence of fatty foods. Applied Microbiology in Food Industry, Acceptance November 1400 (In Press).
Li, P., Zhou, Q. and Gu, Q. (2016) Complete genome sequence of Lactobacillus plantarum LZ227, a potential probiotic strain producing B-group vitamins. Journal of Biotechnology, 234: 66–70.
Liong, M. T. (2007). Probiotics: a critical review of their potential role as antihypertensives, immune modulators, hypocholesterolemics, and perimenopausal treatments. Nutrition Reviews, 65(7): 316–328.
Liu, C., Kolida, S., Charalampopoulos, D. and Rastall, R.A. (2020). An evaluation of the prebiotic potential of microbial levans from Erwinia sp. 10119. Journal of Functional Foods, 64: 103668.
Liu, J., Kandasamy, S., Zhang, J., Kirby, C.W., Karakach, T., Hafting, J. et al. (2015). Prebiotic effects of diet supplemented with the cultivated red seaweed Chondrus crispus or with fructo-oligo-saccharide on host immunity, colonic microbiota and gut microbial metabolites. BMC Complementary and Alternative Medicine, 15(1): 1–12.
Lordan, S., Ross, R.P. and Stanton, C. (2011). Marine bioactives as functional food ingredients: potential to reduce the incidence of chronic diseases. Marine Drugs, 9(6): 1056–1100.
Ma, E.L., Choi, Y.J., Choi, J., Pothoulakis, C., Rhee, S.H. and Im, E. (2010).The anticancer effect of probiotic Bacillus polyfermenticus on human colon cancer cells is mediated through ErbB2 and ErbB3 inhibition. International Journal of Cancer, 127(4): 780–790.
Manning, T.S. and Gibson, G.R. (2004). Microbial-gut interactions in health and disease. Prebiotics. Best Pract. Res. Clin. Gastroenterol, 18(2): 287–298.
Markowiak, P. and Śliżewska, K. (2017).Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients, 9(9): 1021.
Mata, T.M., Martins, A.A. and Caetano, N.S. (2010). Microalgae for biodiesel production and other applications: a review. Renewable and Sustainable Energy Reviews, 14(1): 217–232.
Michałkiewicz, J., Krotkiewski, M., Gackowska, L., Wyszomirska-Gołda, M., Helmin-Basa, A., Dzierżanowska D., et al. (2003). Immunomodulatory effects of lactic acid bacteria on human peripheral blood mononuclear cells. Microbial Ecology in Health and Disease, 15: 185-192.
Mishra, A. and Jha, B. (2009). Isolation and characterization of extracellular polymeric substances from micro-algae Dunaliella salina under salt stress. Bioresource Technology, 100(13): 3382–3386.
Mohammadi, M., Kazeroni, N. and Baboli, M.J. (2015). Fatty acid composition of the marine micro alga Tetraselmis chuii Butcher in response to culture conditions. Journal of Algal Biomass Utilazation, 6(2): 49–55.
Mudgil, D., Barak, S. and Khatkar, B.S. (2014). Guar gum: processing, properties and food applications—a review. Journal of Food Science and Technology, 51(3): 409–418.
Niccolai, , Bažec, K., Rodolfi, L., Biondi, N., Zlatić, E., Jamnik, P., Tredici, M. R. (2020). Lactic Acid Fermentation of Arthrospira platensis(Spirulina) in a Vegetal Soybean Drink for Developing New Functional Lactose-Free Beverages. Frontiers in Microbiology, 11.
NithyaBalaSundari, S., Nivedita, V., Chakravarthy, M., Nadda, A.K.(Editor), Srisowmeya, G., Antony, U., Dev, G.N. (2020). Characterization of microbial polysaccharides and prebiotic enrichment of wheat bread with pullulan. Lebensmittel-Wissenschaft Technologie, 122, 109002.
Nowak, R., Nowacka-Jechalke, N., Juda, M. and Malm, A. (2018).The preliminary study of prebiotic potential of Polish wild mushroom polysaccharides: The stimulation effect on Lactobacillus strains growth. European Journal of Nutrition, 57(4): 1511–1521.
O’Sullivan, L., Murphy, B., McLoughlin, P., Duggan, P., Lawlor, P.G., Hughes, H. et al. (2010). Prebiotics from marine macroalgae for human and animal health applications. Marine Drugs, 8(7): 2038–2064.
Oliva-Neto, P. De, Oliveira, S.S., Zilioli, E. and Bellini, M.Z. (2016).Yeasts as potential source for prebiotic β-glucan: Role in human nutrition and health. Probiotics and Prebiotics in Human Nutrition and Health InTech, 244–331.
Ooi, L. G. and Liong, M. T. (2010). Cholesterol-lowering effects of probiotics and prebiotics: a review of in vivo and in vitro International Journal of Molecular Sciences, 11(6): 2499–2522.
Pan, L., Han, Y. and Zhou, Z. (2020). In vitro prebiotic activities of exopolysaccharide from Leuconostoc pseudomesenteroides XG5 and its effect on the gut microbiota of mice. Journal of Functional Foods, 67: 103853.
Panesar, P.S., Panesar, R., Singh, R.S., Kennedy, J.F. and Kumar, H. (2006). Microbial production, immobilization and applications of β‐D‐ Journal of Chemical Technology and Biotechnology: International Research in Process. Environmental and Clean Technology, 81(4): 530–543.
Patro-Gołąb, B. and Szajewska, H. (2019). Systematic Review with Meta-Analysis: Lactobacillus reuteri DSM 17938 for Treating Acute Gastroenteritis in Children. An Update. , 11(11): 2762.
Peña, A.S. (2007). Intestinal flora, probiotics, prebiotics, synbiotics and novel foods. Revista Española de Enfermedades Digestivas, 99(11): 653.
Peredo-Lovillo, A., Romero-Luna, H.E. and Jiménez-Fernández, M. (2020). Health promoting microbial metabolites produced by gut microbiota after prebiotics metabolism. Food Research International, 136: 109473.
Pinchuk, I.V., Bressollier,, Verneuil, B., Fenet, B., Sorokulova, I. B., Mégraud F., Urdaci M.C. (2001). In Vitro Anti-Helicobacter pylori activity of the Probiotic Strain Bacillus subtilis 3 Is Due to Secretion of Antibiotics. Antimicrobial Agents and Chemotherapy, 45( 11): 3156-3161.
Pokusaeva, K., Fitzgerald, G.F. and Sinderen, D. van. (2011). Carbohydrate metabolism in Bifidobacteria. Genes and Nutrition, 6(3): 285–306.
Pompei, A., Cordisco, L., Amaretti, A., Zanoni, S., Matteuzzi, D. and Rossi, M. (2007). Folate production by bifidobacteria as a potential probiotic property. Applied and Environmental Microbiology, 73(1): 179–185.
Pontier-Bres R., Rampal P., Peyron J-F., Munro P., Lemichez E and Czerucka D.(2015). The Saccharomyces boulardii CNCM I-745 strain shows protective effects against the anthracisLT Toxin. Toxins, 7: 4455-4467.
Puupponen-Pimiä, R., Aura, A.-M., Oksman-Caldentey, K.-M., Myllärinen, P., Saarela, M., Mattila-Sandholm, T. et al. (2002). Development of functional ingredients for gut health.Trends in Food Science and Technology, 13(1): 3–11.
Reid, G., Kim, S.O. and Köhler, G.A. (2006) Selecting, testing and understanding probiotic microorganisms. FEMS Immunology and Medical Microbiology, 46(2): 149–157.
Roos, N.M. De and Katan, M.B. (2000). Effects of probiotic bacteria on diarrhea, lipid metabolism, and carcinogenesis: a review of papers published between 1988 and 1998. The American Journal of Clinical Nutrition, 71(2):405–411.
Russo, P., López, P., Capozzi, V., Palencia, P.F. De, Dueñas, M.T., Spano, G. and Fiocco, D. (2012). Beta-glucans improve growth, viability and colonization of probiotic microorganisms. International Journal of Molecular Sciences, 13(5): 6026–6039.
Saraee, F., Amini, K., Hadadi, A., Larypoor, M. (2021). Application of Saccharomyces cerevisiae isolated from industrial effluent for zinc biosorption and zinc-enriched SCP production for human and animal, Food Science and Technology.
Sawangwan, T., Wansanit, W., Pattani, L. and Noysang, C. (2018). Study of prebiotic properties from edible mushroom extraction. Agriculture and Natural Resources, 52(6): 519–524.
Schiavi, E., Barletta, B., Butteroni, C., Corinti, S., Boirivant, M. and Felice, G. Di. (2011). Oral therapeutic administration of a probiotic mixture suppresses established Th2 responses and systemic anaphylaxis in a murine model of food allergy. Allergy, 66(4): 499–508.
Shams, K., Larypoor, M. and Salimian, J. (2021). The immunomodulatory effects of Candida albicans isolated from the normal gastrointestinal microbiome of the elderly on colorectal cancer. Medical Oncology, 38(12): 1–12.
Shu, Q. and Gill, H.S. (2002). Immune protection mediated by the probiotic Lactobacillus rhamnosus HN001 (DR20TM) against Escherichia coli O157:H7 infection in mice. FEMS Immunology and Medical Microbiology, 34(1): 59–64.
Simeoni, U., Berger, B., Junick, J., Blaut, M., Pecquet, S., Rezzonico, E. et al. (2016). Gut microbiota analysis reveals a marked shift to bifidobacteria by a starter infant formula containing a synbiotic of bovine milk‐derived oligosaccharides and Bifidobacterium animalis lactis CNCM I‐3446. Environmental Microbiology, 18(7), 2185-2195.
Skjånes, K., Lindblad, P. and Muller, J. (2007). BioCO2–A multidisciplinary, biological approach using solar energy to capture CO2 while producing H2 and high value products. Biomolecular Engineering, 24(4): 405–413.
Skrzydło-Radomańska, B., Prozorow-Król, B., Cichoż-Lach, H., Majsiak, E., Bierła, J.B., Kosikowski, W. et al. (2020). The effectiveness of synbiotic preparation containing Lactobacillus and Bifidobacterium probiotic strains and short chain fructooligosaccharides in patients with diarrhea Predominant Irritable Bowel Syndrome—A randomized double-blind, placebo-controlled. Nutrients, 12(7): 1999.
Souza Oliveira, R.P. de, Perego, P., Oliveira, M.N. de and Converti, A. (2011). Effect of inulin as prebiotic and synbiotic interactions between probiotics to improve fermented milk firmness. Journal of Food Engineering, 107(1): 36–40.
Szajewska, H. and Hojsak, I. (2020). Health benefits of Lactobacillus rhamnosus GG and Bifidobacterium animalis subspecies lactis BB-12 in children. Postgraduate Medicine, 132(5): 441–451.
Szajewska, H., Kotowska, M., Mrukowicz, J.Z., Arma, M. and Mikolajczyk, W. (2001). Efficacy of Lactobacillus GG in prevention of nosocomial diarrhea in infants. The Journal of Pediatrics, 138(3): 361–365.
Tamime, A.Y., Saarela, M., Sondergaard, A.K., Mistry, V. V and Shah, N.P. (2005). Production and maintenance of viability of probiotic microorganisms in dairy products. Probiotic Dairy Products, 3: 39–63.
Wang, H., Chen, G., Li, X., Zheng, F. and Zeng, X. (2020).Yeast β-glucan, a potential prebiotic, showed a similar probiotic activity to inulin, Food and Function.11(12): 10386–10396.
Wang, S., Xiao, Y., Tian, F., Zhao, J., Zhang, H., Zhai, Q. et al. (2020). Rational use of prebiotics for gut microbiota alterations: Specific bacterial phylotypes and related mechanisms. Journal of Functional Foods, 66: 103838.
Xu, J., Wang, R., Zhang, H., Wu, J., Zhu, L. and Zhan, X. (2021). In vitro assessment of prebiotic properties of oligosaccharides derived from four microbial polysaccharides. Lebensmittel-Wissenschaft Technologie, 147: 111544.