Fluidized Bed Microencapsulation of Lactobacillus Sporogenes with Some Selected Hydrocolloids for Probiotic Bread Production
Subject Areas : food microbiologyS.S. Mirzamani 1 , A.R. Bassiri 2 * , H. Tavakolipour 3 , M.H. Azizi 4 , M. Kargozari 5
1 - MSc of the Department of Food Science and Technology, North Tehran Branch, Islamic Azad University, Tehran, Iran.
2 - Assistant Professor of the Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.
3 - Associate Professor of the Department of Food Science and Technology, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran.
4 - Associate Professor of the Department of Food Science and Technology, Tarbiat Modares University, Tehran, Iran.
5 - Assistant Professor of the Department of Food Science and Technology, North Tehran Branch, Islamic Azad University, Tehran, Iran.
Keywords: Fluidized Bed Drying, Lactobacillus Sporogenes, Probiotic Bread, Simulated Gastric Acid,
Abstract :
This research investigated the encapsulated Lactobacillus Sporogenes resistance to simulated gastric acid condition and extreme heat treatment and the aim was the production of probiotic bread using the encapsulated probiotic. Microcapsules were produced using the L. Sporogenes by a two-step fluidized bed granulation and button spray coating technique with microcrystalline cellulose powder and alginate or xanthan gum as the first layer to enhance bacterial survival under gastrointestinal conditions and gellan or chitosan as the outer layer to increase heat resistance. The results indicated that encapsulation efficiency decreased with increasing the level of both alginate and xanthan and microcapsule containing 0.5% xanthan had significantly higher (p <0.05) encapsulation yield. In the case of acid resistance, 1.5% xanthan in the wall matrix made significantly (p <0.05) higher viability of the probiotics. 0.5% chitosan in the outer layer of the microcapsules caused probiotic more resistant to the heat treatment of 90°C for 15 min. Heat treatment for 30 min at 90°C decreased severely the probiotics population. Moreover, the results from SEM indicated that chitosan represented the smoother surface which is an essential factor to protect cells against environmental condition. Evaluation of encapsulated Probiotic viability in bread showed that 1.5% gellan in outer layer caused higher survivability 24 h after baking. These finding indicated that the application of alginate and chitosan in the microcapsules can protect the L. Sporogenes and considered as an effective method in probiotic bread production.
Abbaszadeh, S., Gandomi, H., Misaghi, A., Bokaei, S. & Noori, N. (2014). The effect of alginate and chitosan concentrations on some properties of chitosan‐coated alginate beads and survivability of encapsulated Lactobacillus rhamnosus in simulated gastrointestinal conditions and during heat processing. Journal of the Science of Food and Agriculture, 94(11), 2210-2216.
Altamiano-Fortoul, R., Moreno-Terrazas, R., Quezada-Gallo, A. & Rosell, C. M. (2012). Viability of some probiotic coatings in bread and its effect on the crust mechanical properties. Food Hydrocolloids, 29(1), 166-170.
Amin, T., Thakur, M. & Jain, S. C. (2013). Microencapsulation – the future of probiotic cultures. Journal of Microbiology, Biotechnology and Food Sciences, 3 (1), 35-43.
Arslan-Tontul, S., Erbas, M. & Gorgulu, A. (2019). The Use of probiotic-loaded single-and double-layered microcapsules in cake production. Probiotics and antimicrobial proteins, 11(3), 840-849.
Axelsson, L. T. (1993). Lactic acid bacteria: Classification and physiology. In S. Salminen, & A. v. Wright (Eds.), Lactic acid bacteria (pp. 1–64). New York, Basel: Marcel Dekker Inc.
Axelsson, L. T., Chung, T. C., Dobrogosz, W. J. & Lindgren, S. E. (1989). Production of broad spectrum antimicrobial substance by Lactobacillus reuteri. Microbial Ecology in Health and Disease, 2, 6–131.
Barbosa-Canovas, G. V. & Uliano, P. J. (2004). Adaption of classical processes to new tech- nical developments and quality requirements. Journal of Food Science, 69, 240–250.
Camelin, I., Lacroix, C., Paquin, C., Prevost, H., Cachon, R. & Divies, C. (1993). Effect of chelatants on gellan gel rheological properties and setting temperature for immobilisation of living Bifidobacteria. Biotechnology Progress, 9, 291-297.
Champagne, C. P. & Fustier, P. (2007). Microencapsulation for the improved delivery of bioactive compounds into foods. Current Opinion in Biotechnology, 18(2), 184-90.
Chandramouli, V., Kailasapathy, K., Peiris, P. & Jones, M. (2004). An improved method of microencapsulation and its evaluation to protect Lactobacillusspp. In simulated gastric conditions. Journal of Microbiological Methods, 56(1), 27–35.
Charalampopoulos, D., Wang, R., Pandiella, S. S. & Webb, C. (2002). Application of cereals and cereal components in functional foods: A review. International Journal of Food Microbiology, 79 (12), 131-141.
Chen, M. J. & Chen, K. N. (2007) Applications of probiotic encapsulation in dairy products. In: Lakkis, Jamileh M. (Ed.), Encapsulation and Controlled Release Technologies in Food Systems. Wiley-Blackwell, USA, 83–107.
Chitprasert, P., Sudsai, P. & Rodklongtan, A. (2012). Aluminum carboxymethyl cellulose–rice bran microcapsules: Enhancing survival of Lactobacillus reuteri KUB-AC5. Carbohydrate polymers, 90(1), 78-86.
Corsetti, A., Gobbetti, M., Balestrieri, F., Paoletti, F., Russi, L. & Rossi, J. (2008). Sourdough lactic acid bacteria effects on bread firmness and staling. Journal of Food Science, 63(2), 347-351.
Chua, K. J. & Chou, S. K. (2003). Low-cost drying methods for developing countries. Trends in Food Science and Technology, 14, 519–528.
Ding, W. K. & Shah, N. P. (2007). Acid, bile, and heat tolerance of free and microencapsulated probiotic bacteria. Journal of food science, 72(9), M446-M450.
Ding, W. K. & Shah, N. P. (2009). Effect of various encapsulating materials on the stability of probiotic bacteria. Journal of Food Science, 74(2), M100-M107.
Elshaghabee, F. M. F., Rokana, N., Gulhane, R. D., Sharma, C. & Panwar, H. (2017).Bacillus as potential probiotics: Status, concerns, and future perspectives. Frontiers in Microbiology, 8, 1490.
FAO & WHO. (2001). Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Report of a joint FAO/WHO expert consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria.
Fareez, I. M., Lim, S. M., Mishra, R. K. & Ramasamy, K. (2015). Chitosan coated alginate–xanthan gum bead enhanced pH and thermotolerance of Lactobacillus plantarum LAB12. International journal of biological macromolecules, 72, 1419-1428.
Favaro-Trindade, C. S. & Grosso, C. R. F. (2002). Microencapsulation of L. acidophilus (La-05) and B. lactis (Bb-12) and evaluation of their survival at the pH values of the stomach and in bile. Journal of microencapsulation, 19(4), 485-494.
Fritzen-Freire, C. B., Prud- Encio, E. S., Amboni, R. D. M. C., Pinto, S. S., Murakami, A. N. & Murakami, F. S. (2012). Microencapsulation of Bifidobacteria by spray drying in the presence of prebiotics. Food Research International, 45, 306–312.
Fujiwara, G. M., Campos, R., Costa, C. K., Dias, J. F. G., Miguel, O. G. & Miguel, M. D. (2013). Production and characterization of alginate-starch-chitosan microparticles containing stigmasterol through the external ionic gelation technique. Brazilian Journal of Pharmaceutical Sciences, 49, 537–547.
González-Cuello, R. E., Ramos-Ramírez, E. G., Cruz-Orea, A. & Salazar-Montoya, J. A. (2012). Rheological characterization and activation energy values of binary mixtures of gellan. European Food Research and Technology, 234(2), 305-313.
Hannoun, B. & Stephanopoulos, G. (1986). Diffusion coefficient of glucose and ethanol in cell-free and cell-occupied calcium alginate membranes. Biotechnology and Bioengineering, 28(6), 829–835.
Kailasapathy, K. & Chin, J. (2000). Survival and therapeutic potential of probiotic organisms with reference to Lactobacillus acidophilus and Bifidobacterium spp. Immunology and Cell Biology, 78, 80–88.
Kim, S. J., Cho, S. Y., Kim, S. H., Song, O. J., Shin, I. S., Cha, D. S. & Park, H. J. (2008). Effect of microencapsulation on viability and other characteristics in Lactobacillus acidophilus ATCC 43121. LWT-Food Science and Technology, 41(3), 493-500.
Kim, W. S., Perl, L., Park, J.H., Tandianus, J. E. & Dunn, N. W. (2001). Assessment of stress response of the probiotic Lactobacillus acidophilus. Current Microbiology, 43(5), 346-350.
Krasaekoopt, W., Bhandari, B. & Deeth, H. (2004). The influence of coating materials on some properties of alginate beads and survivabilityof microencapsulated probiotic bacteria. International Dairy Journal, 14, 737–743.
Krasaekoopt, W., Bhandari, B. & Deeth, H. (2003). Evaluation of encapsulation techniques of probiotics for yoghurt. International DairyJournal, 13, 3–13.
Lee, K. Y. & Heo, T. R. (2000). Survival ofBifidobacterium longum immobilized in calcium alginate beads in simulated gastric juices and bile salt solution. Applied and Environmental Microbiology, 66, 869 – 873.
Iyer, C. & Kailasapathy, K. (2005). Effect of co-encapsulation of probiotics with prebiotics on increasing the viability of encapsulated bacteria in simulated gastrointestinal conditions and in yoghurt.
Journal of Food Science, 70 (1), M18–M23.
Martín, M. J., Villoslada, F. L., Martínez, M. A. R. & Morales, M. E. (2014). Microencapsulation of bacteria: A review of different technologies and their impact on the probiotic effects. Innovative Food Science and Emerging Technologie, 27, 15-25.
Mokarram, R.R., Mortazavi, S.A., Najafi, M.H. & Shahidi, F. (2009). The influence of multi stage alginate coating on survivability of potential probiotic bacteria in simulated gastric and intestinal juice. Food Research International, 42(8),1040-1045.
Rallu, F., Gruss, A. & Maguin, E. (1996). Lactococcus lactis and stress. Antonie van Leeuwenhoek, 70(2), 243-251.
Sabikhi, L., Babu, R., Thompkinson, D. K. & Kapila, S. (2010). Resistance of microencapsulated Lactobacillus acidophilus LA1 processing treatments and simulated gut conditions.Food Bioprocess Technology, 3, 586-593.
Semyonov, D., Ramon, O., Kovacs, A., Friedlander, L. & Shimoni, E. (2012). Air suspension fluidized-bed microencapsulation of probiotics. Drying Technology, 30, 1918–1930.
Seyedain-Ardabili, M., Sharifan, A. & Ghiassi Tarzi, B. (2016). The production of synbiotic bread by microencapsulation. Food Technology and Biotechnology, 54(10), 52-59.
Sultana, K., Godward, G., Reynolds, N., Arumugaswamy, R., Peiris, P. & Kailasapathy, K. (2000). Encapsulation of probiotics bacteria with alginate–starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. International Journal of Food Microbiology, 62(1–2), 47–55.
Trindade, C. F. & Grosso, C. R. F. (2000). The effect of the immobilisation of Lactobacillus acidophilus and Bifidobacterium lactis in alginate on their tolerance to gastrointestinal secretions. Milchwissenschaft, 55(9), 496-499.
Zanjani, M. A. K., Tarzi, B. G., Sharifan, A., Mohammadi, N., Bakhoda, H. & Madanipour, M. M. (2012). Microencapsulation of Lactobacillus casei with calcium alginate-resistant starch and evaluation of survival and sensory properties in cream-filled cake. African Journal of Microbiology Research, 6(26), 5511-5517.
Zhang, L., Chen, X. D., Boom, R. M. & Schutyser, M. A. (2018). Survival of encapsulated Lactobacillus plantarum during isothermal heating and bread baking. LWT, 93, 396-404.
Zhang, L., Taal, M. A., Boom, R. M., Chen, X. D. & Schutyser, M. A. I. (2018). Effect of baking conditions and storage on the viability of Lactobacillus 657 plantarum supplemented to bread. LWT - Food Science and Technology, 87, 318–325.
Zaeim,D., Sarabi-Jamab,M., Ghorani,B., Kadkhodaee,R., Liu, W. & Tromp, R. H. (2020).
Microencapsulation of probiotics in multi-polysaccharide microcapsules by electro-hydrodynamic atomization and incorporation into ice-cream formulation, Food Structure, 25,100-147.