تنوع زیستی ریزجلبک ها، ظرفیتی بالقوه در فناوری های زیستی و محیطی
محورهای موضوعی : آب و محیط زیستمریم آخوندیان 1 * , سید دانیال میرحسن نیا 2
1 - استادیار، گروه زیست دریا، دانشکده علوم دریایی و اقیانوسی، دانشگاه مازندران، بابلسر، ایران. *(مسوول مکاتبات)
2 - دانشجوی کارشناسی ارشد، گروه زیست دریا، دانشکده علوم دریایی و اقیانوسی، دانشگاه مازندران، بابلسر، ایران.
کلید واژه: ریزجلبک, زیست فنآوری, ترکیبات فعال زیستی, محیط زیست, ظرفیت های بالقوه,
چکیده مقاله :
ریزجلبــک ها گروهی بسیار متنوع از گیـاهان آبزی هستند که امروزه طیف کاربردی گستـرده ای در علم فنــــآوری زیستی یافته اند. این فتوسنتزکنندگان میکروسکوپی، علی رغم نقش مؤثری که در تولید اکسیژن در روی کره زمین ایفا می کنند، به دلیل پراکنش و فراوانی بالایی که دارند تقریبا در تمام آب های روی زمین یافت می شوند. ارزش بالای تغذیه ای و نیز پتانسیل این گیاهان میکروسکوپی در تولید ترکیبات فعـال زیستـی با کاربردهای متنوع دارویی و غـذایی، هم چنین کاربری به عنوان مواد اولیــه خام جهت استخراج سوخت های زیستیِ سازگار با محیط زیست (بیودیزل) و نیز کاربردی که در پایش و پالایندگی آلاینده های محیطی مانند فلزات سنگین، سموم و علف کش ها دارند؛ این گیاهانِ کوچک مقیاس را، در کانون توجه محققین بی شماری در سراسر دنیا قرار داده است. اگرچه پژوهش های فراوانی در سراسر دنیا بر پتانسیل های زیست فنـآورانه ی ریز جلبک ها متمرکز می باشد؛ امـا به نظر می رسد در کشـور ما با وجود دسترسی به منابع آبی و تنوع زیستی بالای ریزجلبک ها به سبب شریط آب و هوایی، تاکنون ظرفیت های بالقوه ی این منابع با ارزش، مورد توجـه کافی قرار نگرفته است. لذا، این گفتــار مروری است بر ظرفــیت های بالقوه ریزجلبــک ها برای استـفاده در فنــآوری های زیستی نوین که می تواند توجه محققین و علاقمندان به زیست فناوری دریایی را به منظور انجام تحقیقات در این زمینه جلب نماید.
Microalgae is a group of highly versatile aquatic plants that nowadays have achieved a wide range of applications in the science of biotechnology. These microscopic photosynthesizers, despite performing an effective role in the oxygen production on the earth, due to their high distribution and frequency are almost found in the entire ecosystems on the globe. The high nutritional value and even potential of these microscopic plants in the production of bioactive compounds with varied food and medicinal usages, also as primary raw materials for the extraction of sustainable biofuels (biodiesel), besides their application in monitoring and refinement of environmental pollutants such as heavy metals, pesticides and herbicides; have nestled these small scale plants in the spotlight of the countless researchers worldwide. Although, globally several researches have been focused on the biotechnological potentials of microalgae, but it seems that so far in our country, the considerable efficiency has not been provided to this valuable resource. Therefore, this article is an overview of the microalgal potential to use in modern biotechnology and can attract the attention of researchers to carry out research in this area.
1- Chu W-L., 2012. Biotechnological applications of microalgae. IeJSME,vol. 6(1),pp.24-37.
2- Zähner H., Drautz H., Weber W., 1982. Novel approaches to metabolite screening. Bioactive Microbial Products: Search and Discovery, vol. 70.
3- Cannell RJ., 1998. How to approach the isolation of a natural product. Natural Products Isolation: Springer, pp. 1-51.
4- Bouhlal R., Haslin C., Chermann J-C., Colliec-Jouault S., Sinquin C., Simon G., et al., 2011. Antiviral activities of sulfated polysaccharides isolated from Sphaerococcus coronopifolius (Rhodophytha, Gigartinales) and Boergeseniella thuyoides (Rhodophyta, Ceramiales). Marine drugs, vol. 9(7), pp.1187-1209.
5- Kim S-K., Karadeniz F., 2011. Anti-HIV activity of extracts and compounds from marine algae. Advances in food and nutrition research, vol. 64, pp.255-265.
6- De Felício R., de Albuquerque S., Young MCM., Yokoya NS., Debonsi HM., 2010. Trypanocidal, leishmanicidal and antifungal potential from marine red alga Bostrychia tenella J. Agardh (Rhodomelaceae, Ceramiales). Journal of pharmaceutical and biomedical analysis, vol. 52(5), pp.763-769.
7- Na H-J., Moon P-D., Lee H-J., Kim H-R., Chae H-J., Shin T., et al., 2005. Regulatory effect of atopic allergic reaction by Carpopeltis affinis. Journal of ethnopharmacology, vol. 101(1), pp.43-48.
8- hi D., Li J., Guo S., Han L., 2008. Antithrombotic effect of bromophenol, the alga-derived thrombin inhibitor. Journal of Biotechnology, vol. 136, pp.579-585.
9- Kim S-K., Thomas NV., Li X., 2011. Anticancer compounds from marine macroalgae and their application as medicinal foods. Advances in food and nutrition research, vol. 64, pp.213-224.
10- Devi GK., Manivannan K., Thirumaran G., Rajathi FAA., Anantharaman P., 2011. In vitro antioxidant activities of selected seaweeds from Southeast coast of India. Asian Pacific journal of tropical medicine, vol. 4(3), pp.205-211.
11-Bhadury P., Wright PC., 2004. Exploitation of marine algae: biogenic compounds for potential antifouling applications. Planta, vol. 219(4),pp.561-578.
12- Tam NF., Chong A., Wong Y., 2002. Removal of tributyltin (TBT) by live and dead microalgal cells. Marine pollution bulletin, vol. 45(1), pp.362-371.
13- Travieso L., Canizares R., Borja R., Benitez F., Dominguez A., Dupeyrón y R., et al., 1999. Heavy metal removal by microalgae. Bulletin of environmental contamination and toxicology, vol. 62(2), pp.144-151.
14- Demirbas A., 2011. Biodiesel from oilgae, biofixation of carbon dioxide by microalgae: a solution to pollution problems. Applied Energy, vol. 88(10),pp.3541-3547.
15- Amaro HM., Guedes AC., Malcata FX., 2011. Antimicrobial activities of microalgae: an invited review. Science against microbial pathogens: communicating current research and technological advances, vol. 3, pp.1272-1284.
16- Barsanti L., Gualtieri P., 2014. Algae: anatomy, biochemistry, and biotechnology: CRC press.
17- Abdulqader G., Barsanti L., Tredici MR., 2000. Harvest of Arthrospira platensis from Lake Kossorom (Chad) and its household usage among the Kanembu. Journal of applied phycology, vol. 12(3-5), pp.493-498.
18-Belay A., 2008. Spirulina (Arthrospira): production and quality assurance. Spirulina in human nutrition and health, pp. 1-25.
19-Han D BY., Hu Z, 2004. Industrial production of microalgal cell-mass and secondary products – species of high potential. Nostoc. In: Richmond, Abdulqader G, editors. Handbook of microalgal culture: biotechnology and applied phycology: Oxford: Blackwell Science, p. 304-311.
20-Iwamoto H., 2004. 11 Industrial Production of Microalgal Cell-mass and Secondary Products–Major Industrial Species. Handbook of microalgal culture: biotechnology and applied phycology, p. 255.
21- Spolaore P., Joannis-Cassan C., Duran E., Isambert A., 2006. Commercial applications of microalgae. Journal of bioscience and bioengineering,vol. 101(2),pp.87-96.
22- Hoppe HA., 1979. Marine algae and their products and constituents in pharmacy. Marine algae in pharmaceutical science, editors, Heinz A Hoppe., Tore Levring., Yukio Tanaka.
23- Senhorinho GN., Ross GM., Scott JA., 2015. Cyanobacteria and eukaryotic microalgae as potential sources of antibiotics.
24- Borowitzka MA., 1995. Microalgae as sources of pharmaceuticals and other biologically active compounds. Journal of Applied Phycology,vol. 7(1),pp.3-15.
25-Sieburth JM., 1959. Antibacterial Activity of Antarctic Marine Phytoplankton1. Limnology and Oceanography, vol. 4(4), pp.419-424.
26-Burkholder R., Burkholder L., Almodovar L., 1960. Antibiotic activity of some marine algae of Puerto Rico. Botanica Marina, vol. 2(1-2), pp.149-156.
27-Jørgensen EG., Nielsen ES., 1961. Effect of filtrates from cultures of unicellular algae on the growth of Staphylococcus aureus. Physiologia Plantarum, vol. 14(4), pp.896-908.
28- Duff D., Bruce D., Antia N., 1966. The antibacterial activity of marine planktonic algae. Canadian Journal of Microbiology, vol. 12(5), pp.877-884.
29- Bruce D., Duff D., Antia N., 1967. The identification of two antibacterial products of the marine planktonic alga Isochrysis galbana. Journal of general microbiology,vol. 48(2),pp.293-298.
30- Ramamurthy V., 1970. Antibacterial of the marine blue-green alga Trichodesmium erythraeum in the gastro-intestinal contents of the sea gull Laurus brunicephalus. Marine Biology,vol. 6(1),pp.74-76.
31- Berland BR., Bonin DJ., Cornu AL., Maestrini SY., Marino JP., 1972. the antibacterial substances of the marine alga stichochrysis immobilis (chrysophyta) 12. Journal of Phycology,vol. 8(4),pp.383-392.
32- Sieburth JM., 1960. Acrylic acid, an" antibiotic" principle in Phaeocystis blooms in Antarctic waters. Science,vol. 132(3428),pp.676-677.
33-Fernandes P., 2006. Antibacterial discovery and development—the failure of success?. Nature biotechnology,vol. 24(12),pp.1497-1503.
34-Cardellina JH., Moore RE., Arnold EV., Clardy J., 1979. Structure and absolute configuration of malyngolide, an antibiotic from the marine blue-green alga Lyngbya majuscula Gomont. The Journal of Organic Chemistry,vol. 44(23),pp.4039-4042.
35- Bloor S., England R., 1989. Antibiotic production by the cyanobacterium Nostoc muscorum. Journal of Applied Phycology,vol. 1(4),pp.367-372.
36- Jaki B., Orjala J., Bürgi H-R., Sticher O., 1999. Biological screening of cyanobacteria for antimicrobial and molluscicidal activity, brine shrimp lethality, and cytotoxicity. Pharmaceutical biology,vol. 37(2),pp.138-143.
37- Ghasemi Y., Yazdi MT., Shokravi S., Soltani N., Zarrini G., 2003. Antifungal and antibacterial activity of paddy-fields cyanobacteria from the north of Iran. Journal of Sciences Islamic Republic of Iran, vol. 14(3),pp.203-210.
38-Soltani N., Khavari-Nejad R., Tabatabaei Yazdi M., Shokravi S., Fernandez-Valiente E., 2005. Screening of soil cyanobacteria for antifungal and antibacterial activity. Pharmaceutical biology,vol. 43(5),pp.455-459.
39-Volk R-B., Furkert FH., 2006. Antialgal, antibacterial and antifungal activity of two metabolites produced and excreted by cyanobacteria during growth. Microbiological Research,vol. 161(2),pp.180-186.
40- Parisi AS., Younes S., Colla L., 2010. Avaliação da atividade antibacteriana da microalga Spirulina platensis. Revista de Ciências Farmacêuticas Básica e Aplicada, vol. 30(3),pp. 297-301.
41- Kumar V., Bhatnagar A., Srivastava J., 2011. Antibacterial activity of crude extracts of Spirulina platensis and its structural elucidation of bioactive compound. Journal of Medicinal Plants Research,vol. 5(32),pp.7043-7048.
42-Priyadarshani I., Rath B., 2012. Commercial and industrial applications of micro algae–A review. J algal biomass utln, vol. 3(4),pp.89-100.
43- Becker W., 2004. 18 Microalgae in Human and Animal Nutrition. Handbook of microalgal culture: biotechnology and applied phycology, pp. 312.
44- Pulz O., Gross W., 2004. Valuable products from biotechnology of microalgae. Applied microbiology and biotechnology,vol. 65(6),pp.635-648.
45- Colla LM., Reinehr CO., Reichert C., Costa JAV., 2007. Production of biomass and nutraceutical compounds by Spirulina platensis under different temperature and nitrogen regimes. Bioresource technology,vol. 98(7),pp.1489-1493.
46- Sajilata M., Singhal R., Kamat M., 2008. Fractionation of lipids and purification of γ-linolenic acid (GLA) from Spirulinaplatensis. Food Chemistry,vol. 109(3),pp.580-586.
47- De Oliveira Rangel-Yagui C., Danesi EDG., de Carvalho JCM., Sato S., 2004. Chlorophyll production from Spirulina platensis: cultivation with urea addition by fed-batch process. Bioresource technology, vol. 92(2),pp.133-141.
48-Madhyastha H., Vatsala T., 2007. Pigment production in Spirulina fussiformis in different photophysical conditions. Biomolecular engineering ,vol. 24(3)pp.301-305.
49-Ogbonda KH., Aminigo RE., Abu GO., 2007. Influence of temperature and pH on biomass production and protein biosynthesis in a putative Spirulina sp. Bioresource Technology,vol. 98(11),pp. 2207-2211.
50-Kharkwal H., Joshi D., Panthari P., Pant MK., Kharkwal AC., 2012. Algae as future drugs. Asian J Pharm Clin Res,vol. 5,pp.1-4.
51-MišurCoVá L., KráčMar S., Klejdus B., Vacek J., 2010. Nitrogen content, dietary fiber, and digestibility in algal food products. Czech J Food Sci,vol. 28,pp.27-35.
52-Chen Y-C., 2003. Immobilized Isochrysis galbana (Haptophyta) for long-term storage and applications for feed and water quality control in clam (Meretrix lusoria) cultures. Journal of applied phycology,vol. 15(5),pp.439-444.
53-Sumi Y., 2009. Microalgae pioneering the future-application and utilization. Life Science Research Unit, quarterly review,vol. 34.
54-Robert SS., Singh SP., Zhou X-R., Petrie JR., Blackburn SI., Mansour PM., et al., 2005. Metabolic engineering of Arabidopsis to produce nutritionally important DHA in seed oil. Functional Plant Biology,vol. 32(6),pp. 473-479.
55-Thirumaran G., Arumugam M., Arumugam R., Anantharaman P., 2009. Effect of seaweed liquid fertilizer on growth and pigment concentration of Abelmoschus esculentus (I) medikus. American-Eurasian Journal of Agronomy,vol. 2(2),pp.57-66.
56- Li Y., Horsman M., Wu N., Lan CQ., Dubois‐Calero N., 2008. Biofuels from microalgae. Biotechnology progress, vol. 24(4),pp.815-820.
57-Isnansetyo A., Kamei Y., 2009. Bioactive substances produced by marine isolates of Pseudomonas. Journal of industrial microbiology & biotechnology,vol. 36(10),pp.1239-1248.
58-Herrero M., Ibáñez E., Cifuentes A., Reglero G., Santoyo S., 2006. Dunaliella salina microalga pressurized liquid extracts as potential antimicrobials. Journal of Food Protection,vol. 69(10),pp. 2471-2477.
59- Lordan S., Ross RP., Stanton C., 2011. Marine bioactives as functional food ingredients: potential to reduce the incidence of chronic diseases. Marine drugs,vol. 9(6),pp.1056-1100.
60-Borowitzka MA., 2013. High-value products from microalgae—their development and commercialisation. Journal of applied phycology,vol. 25(3),pp.743-756.
61- Hernández-Carlos B., Gamboa-Angulo MM., 2011. Metabolites from freshwater aquatic microalgae and fungi as potential natural pesticides. Phytochemistry Reviews, vol. 10(2),pp.261-286.
62- Sasso S., Pohnert G., Lohr M., Mittag M., Hertweck C., 2012. Microalgae in the postgenomic era: a blooming reservoir for new natural products. FEMS microbiology reviews, vol. 36(4),pp. 761-785.
63-Stein JR., Borden CA., 1984. Causative and beneficial algae in human disease conditions: a review. Phycologia,vol. 23(4),pp. 485-501.
64-Metting B., Pyne JW., 1986. Biologically active compounds from microalgae. Enzyme and Microbial Technology,vol. 8(7),pp.386-394.
65- Andersen RA., 2013. The microalgal cell. Handbook of Microalgal Culture: Applied Phycology and Biotechnology, Second Edition, pp. 1-20.
66-Madhumathi V., Deepa P., Jeyachandran S., Manoharan C., Vijayakumar S., 2011. Antimicrobial activity of cyanobacteria isolated from freshwater lake. Int J Microbiol Res,vol. 2(3),pp. 213-216.
67- Prakash JW., Marimuthu J., Jeeva S., 2011. Antimicrobial activity of certain fresh water microalgae from Thamirabarani River, Tamil Nadu, South India. Asian Pacific Journal of Tropical Biomedicine,vol. 1(2),pp. 170-173.
68- Abdo S., Hetta M., Samhan F., El Din R., Ali G., 2012. Phytochemical and antibacterial study of five freshwater algal species. Asian journal of plant sciences,vol. 11(3),pp.109.
69- Kumar M., Tripathi M., Srivastava A., Nath G., Asthana R., 2012. A comparative study of antibacterial activity of brackish and fresh water cyanobacterial strains. Asian Journal of Experimental Biological Sciences, vol. 3(3),pp. 548-552.
70-Thummajitsakul S., Silprasit K., Sittipraneed S., 2012. Antibacterial activity of crude extracts of cyanobacteria Phormidium and Microcoleus species. African Journal of Microbiology Research,vol. 6(10),pp. 2574-2579.
71-Yadav S., Sinha RP., Tyagi MB., 2012. Antimicrobial activity of some cyanobacteria. Int J Pharm Pharm Sci,vol. 4,pp. 631-635.
72-Abazari M., Zarrini G., Rasooli I., 2013. Antimicrobial potentials of Leptolyngbya sp. and its synergistic effects with antibiotics. Jundishapur Journal of Microbiology, vol. 6(5),pp. 6536.
73- Mudimu O., Rybalka N., Bauersachs T., Born J., Friedl T., Schulz R., 2014. Biotechnological screening of microalgal and cyanobacterial strains for biogas production and antibacterial and antifungal effects. Metabolites,vol. 4(2),pp. 373-393.
74- Ward OP., Singh A., 2005. Omega-3/6 fatty acids: Alternative sources of production. Process Biochemistry,vol. 40(12),pp. 3627-3652.
75- Jüttner F., 2001. Liberation of 5, 8, 11, 14, 17‐Eicosapentaenoic acid and other polyunsaturatedfatty acids from lipids as a grazer defense reaction in epilithic diatom biofilms. Journal of Phycology,vol. 37(5),pp.744-755.
76- D'Ippolito G., Tucci S., Cutignano A., Romano G., Cimino G., Miralto A., et al., 2004. The role of complex lipids in the synthesis of bioactive aldehydes of the marine diatom Skeletonema costatum. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids,vol. 1686(1),pp.100-107.
77- Smith VJ., Desbois AP., Dyrynda EA., 2010. Conventional and unconventional antimicrobials from fish, marine invertebrates and micro-algae. Marine drugs,vol. 8(4),pp. 1213-1262.
78-Prakash S., Bhimba V., 2006. Pharmaceutical development of novel microalgal compounds for mdr Mycobacterium tuberculosis. Natural Product Radiance,vol. 4,pp. 264-269.
79- Desbois AP., Mearns-Spragg A., Smith VJ., 2009. A fatty acid from the diatom Phaeodactylum tricornutum is antibacterial against diverse bacteria including multi-resistant Staphylococcus aureus (MRSA). Marine Biotechnology,vol. 11(1),pp.45-52.
80- Arun N., Gupta S., Singh D., 2012. Antimicrobial and antioxidant property of commonly found microalgae Spirulina platensis, Nostoc muscorum and Chlorella pyrenoidosa against some pathogenic bacteria and fungi. International Journal of Pharmaceutical Sciences and Research, vol.3(12),pp. 4866.
81- Bai VDM., Krishnakumar S., 2013. Evaluation of antimicrobial metabolites from marine microalgae Tetraselmis suecica using gas chromatography–mass spectrometry (GC–MS) analysis. Int J Pharm Pharm Sci,vol. 5(3),pp.17-23.
82- Danyal A., Mubeen U., Malik KA., 2013. Investigating two native algal species to determine antibiotic susceptibility against some pathogens. Curr Res J Bio l Sci,vol. 5,pp. 70-74.
83-Santoyo S., Rodríguez-Meizoso I., Cifuentes A., Jaime L., Reina GG-B., Señorans F., et al., 2009. Green processes based on the extraction with pressurized fluids to obtain potent antimicrobials from Haematococcus pluvialis microalgae. LWT-Food Science and Technology,vol. 42(7),pp.1213-1218.
84- Mendiola JA., Torres CF., Toré A., Martín-Álvarez PJ., Santoyo S., Arredondo BO., et al., 2007. Use of supercritical CO2 to obtain extracts with antimicrobial activity from Chaetoceros muelleri microalga. A correlation with their lipidic content. European Food Research and Technology, vol. 224(4),pp. 505-510.
85- Benkendorff K., Davis AR., Rogers CN., Bremner JB., 2005. Free fatty acids and sterols in the benthic spawn of aquatic molluscs, and their associated antimicrobial properties. Journal of Experimental Marine Biology and Ecology,vol. 316(1),pp. 29-44.
86- Ohta S., Shiomi Y., Kawashima A., Aozasa O., Nakao T., Nagate T., et al., 1995. Antibiotic effect of linolenic acid fromChlorococcum strain HS-101 andDunaliella primolecta on methicillin-resistantStaphylococcus aureus. Journal of applied phycology,vol. 7(2),pp.121-127.
87- Ohta S., Chang T., Kawashima A., Nagate T., Murase M., Nakanishi H., et al., 1994. Anti methicillin-resistant Staphylococcus aureus (MRSA) activity by linolenic acid isolated from the marine microalga Chlorococcum HS-101. Bulletin of environmental contamination and toxicology, vol. 52(5),pp. 673-680.
88-Aksoy D., Unal S., 2008. New antimicrobial agents for the treatment of Gram‐positive bacterial infections. Clinical Microbiology and Infection,vol. 14(5),pp. 411-420.
89- Ohta S., Chang T., Ikegami N., Kondo M., Miyata H., 1993. Antibiotic substance produced by a newly isolated marine microalga, Chlorococcum HS-101. Bulletin of environmental contamination and toxicology, vol. 50(2),pp. 171-178.
90- Berry JP., Gantar M., Gawley RE., Wang M., Rein KS., 2004. Pharmacology and toxicology of pahayokolide A, a bioactive metabolite from a freshwater species of Lyngbya isolated from the Florida Everglades. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, vol. 139(4),pp.231-238.
91- Findlay JA., Patil AD., 1984. Antibacterial constituents of the diatom Navicula delognei. Journal of natural products,vol. 47(5),pp. 815-818.
92- Falch BS., Koenig GM., Wright AD., Sticher O., Ruegger H., Bernardinelli G., 1993. Ambigol A and B: new biologically active polychlorinated aromatic compounds from the terrestrial blue-green alga Fischerella ambigua. The Journal of Organic Chemistry, vol. 58(24),pp. 6570-6575.
93- Ishida K., Matsuda H., Murakami M., Yamaguchi K., 1997. Kawaguchipeptin B, an antibacterial cyclic undecapeptide from the cyanobacterium Microcystis aeruginosa. Journal of natural products,vol. 60(7),pp.724-726.
94- Jaki B., Heilmann J., Sticher O., 2000. New Antibacterial Metabolites from the Cyanobacterium Nostoc c ommune (EAWAG 122b). Journal of natural products, vol. 63(9),pp.1283-1285.
95- Ploutno A., Carmeli S., Nostocyclyne A., 2000. a novel antimicrobial cyclophane from the cyanobacterium Nostoc sp. Journal of natural products,vol. 63(11),pp. 1524-1526.
96- Asthana RK., Tripathi MK., Srivastava A., Singh AP., Singh SP., Nath G., et al., 2009. Isolation and identification of a new antibacterial entity from the Antarctic cyanobacterium Nostoc CCC 537. Journal of applied phycology,vol. 21(1),pp. 81-88.
97- Mundt S., Kreitlow S., Jansen R., 2003. Fatty acids with antibacterial activity from the cyanobacterium Oscillatoria redekei HUB 051. Journal of Applied Phycology,vol. 15(2-3),pp. 263-267.
98-Raveh A., Carmeli S., 2007. Antimicrobial ambiguines from the cyanobacterium Fischerella sp. collected in Israel. Journal of natural products,vol. 70(2),pp.196-201.
99- Danyal A., Mubeen U., Malik KA., 2013. Investigating two native algal species to determine antibiotic susceptibility against some pathogens. Current Research Journal of Biological Sciences,vol. 5,pp. 70-74.
100- Kokou F., Makridis P., Kentouri M., Divanach P., 2012. Antibacterial activity in microalgae cultures. Aquaculture Research, vol. 43(10),pp. 1520-1527.
101- Leflaive J., Ten‐Hage L., 2007. Algal and cyanobacterial secondary metabolites in freshwaters: a comparison of allelopathic compounds and toxins. Freshwater Biology, vol. 52(2),pp. 199-214.
102- Sang M., Wang M., Liu J., Zhang C., Li A., 2012. Effects of temperature, salinity, light intensity, and pH on the eicosapentaenoic acid production of Pinguiococcus pyrenoidosus. Journal of Ocean University of China,vol. 11(2),pp.181-186.
103- Breuer G., Lamers PP., Martens DE., Draaisma RB., Wijffels RH., 2013. Effect of light intensity, pH, and temperature on triacylglycerol (TAG) accumulation induced by nitrogen starvation in Scenedesmus obliquus. Bioresource technology,vol. 143,pp. 1-9.
104- Juneja A., Ceballos RM., Murthy GS., 2013. Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies,vol. 6(9),pp. 4607-4638.
105- Skjånes K., Rebours C., Lindblad P., 2013. Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Critical reviews in biotechnology,vol. 33(2),pp. 172-215.
106- Al-Wathnani H., Ara I., Tahmaz R., Al-Dayel T., Bakir M., 2012. Bioactivity of natural compounds isolated from cyanobacteria and green algae against human pathogenic bacteria and yeast. J Medicinal Pt Res,vol. 6(18),pp. 3425-3433.
107-Ördög V., Stirk W., Lenobel R., Bancířová M., Strnad M., Van Staden J., et al., 2004. Screening microalgae for some potentially useful agricultural and pharmaceutical secondary metabolites. Journal of Applied Phycology,vol. 16(4),pp. 309-314.
108- Heidari F., Riahi H., Yousefzadi M., Asadi M., 2012. Antimicrobial activity of cyanobacteria isolated from hot spring of geno. Middle-East Journal of Scientific Research,vol. 12(3),pp. 336-339.
109-Debro L., Ward H., 1979. Antibacterial activity of freshwater green algae. Planta medica.
110-Cooper S., Battat A., Marsot P., Sylvestre M., 1983. Production of antibacterial activities by two Bacillariophyceae grown in dialysis culture. Canadian Journal of Microbiology, vol. 29(3),pp. 338-341.
111-Trick CG., Andersen RJ., Harrison PJ., 1984. Environmental factors influencing the production of an antibacterial metabolite from a marine dinoflagellate, Prorocentrum minimum. Canadian Journal of Fisheries and Aquatic Sciences,vol. 41(3),pp. 423-432.
112- Chetsumon A., Maeda I., Umeda F., Yagi K., Miura Y., Mizoguchi T., 1994. Antibiotic production by the immobilized cyanobacterium, Scytonema sp. TISTR 8208, in a seaweed-type photobioreactor. Journal of applied phycology,vol. 6(5),pp. 539-543.
113- Noaman NH., Fattah A., Khaleafa M., Zaky SH., 2004. Factors affecting antimicrobial activity of Synechococcus leopoliensis. Microbiological Research, vol. 159(4),pp. 395-402.
114- Malik V., 1980. Microbial secondary metabolism. Trends in Biochemical Sciences, vol. 5(3),pp. 68-72.
115- Burja AM., Banaigs B., Abou-Mansour E., Burgess JG., Wright PC., 2001. Marine cyanobacteria—a prolific source of natural products. Tetrahedron,vol. 57(46),pp. 9347-9377.
116- Elion GB., Furman PA., Fyfe JA., De Miranda P., Beauchamp L., Schaeffer HJ., 1977. Selectivity of action of an antiherpetic agent, 9-(2-hydroxyethoxymethyl) guanine. Proceedings of the National Academy of Sciences,vol. 74(12),pp. 5716-5720.
117- Schaeffer HJ., Beauchamp L., de Miranda P., Elion GB., Bauer D., Collins P., 1978. 9-(2-hydroxyethoxymethyl) guanine activity against viruses of the herpes group. Nature, vol. 272(5654),pp. 583-585.
118- Damonte EB., Pujol CA., Coto CE., 2004. Prospects for the therapy and prevention of dengue virus infections. Advances in virus research,vol. 63,pp. 239-285.
119- Geresh S., Arad S., 1991. The extracellular polysaccharides of the red microalgae: chemistry and rheology. Bioresource technology,vol. 38(2),pp. 195-201.
120- Moelling K., Schulze T., Diringer H., 1989. Inhibition of human immunodeficiency virus type 1 RNase H by sulfated polyanions. Journal of virology,vol. 63(12),pp. 5489-5491.
121- Lee J-B., Hayashi K., Hirata M., Kuroda E., Suzuki E., Kubo Y., et al., 2006. Antiviral sulfated polysaccharide from Navicula directa, a diatom collected from deep-sea water in Toyama Bay. Biological and Pharmaceutical Bulletin,vol. 29(10),pp. 2135-2139.
122- Yim JH., Kim SJ., Ahn SH., Lee CK., Rhie KT., Lee HK., 2004. Antiviral effects of sulfated exopolysaccharide from the marine microalga Gyrodinium impudicum strain KG03. Marine biotechnology,vol. 6(1),pp. 17-25.
123- Ohta S., Ono F., Shiomi Y., Nakao T., Aozasa O., Nagate T., et al., 1998. Anti-herpes simplex virus substances produced by the marine green alga, Dunaliella primolecta. Journal of applied phycology,vol. 10(4),pp. 349-356.
124- Fáb egas J., Garcıa D., Fernandez-Alonso M., Rocha AI., Gomez-Puertas P., Escribano JM., et al., 1999. In vitro inhibition of the replication of haemorrhagic septicaemia virus (VHSV) and African swine fever virus (ASFV) by extracts from marine microalgae. Antiviral research,vol. 44(1),pp.67-73.
125- Hasui M., Matsuda M., Okutani K., Shigeta S., 1995. In vitro antiviral activities of sulfated polysaccharides from a marine microalga (Cochlodinium polykrikoides) against human immunodeficiency virus and other enveloped viruses. International journal of biological macromolecules,vol. 17(5),pp. 293-297.
126-Santoyo S., Jaime L., Plaza M., Herrero M., Rodriguez-Meizoso I., Ibañez E., et al., 2012. Antiviral compounds obtained from microalgae commonly used as carotenoid sources. Journal of applied phycology, vol. 24(4),pp. 731-741.
127-Evans L., Callow ME., Percival E., Fareed V., 1974. Studies on the synthesis and composition of extracellular mucilage in the unicellular red alga Rhodella. Journal of cell science,vol. 16(1),pp. 1-21.
128-Keidan M., Friedlander M., Arad SM., 2009. Effect of Brefeldin A on cell-wall polysaccharide production in the red microalga Porphyridium sp.(Rhodophyta) through its effect on the Golgi apparatus. Journal of applied phycology,vol. 21(6),pp. 707-717.
129-Anaissie E., Bodey G., 1989. Nosocomial fungal infections. Old problems and new challenges. Infectious disease clinics of North America,vol. 3(4),pp. 867-882.
130-Wey SB., Mori M., Pfaller MA., Woolson RF., Wenzel RP., 1988. Hospital-acquired candidemia: the attributable mortality and excess length of stay. Archives of Internal Medicine,vol. 148(12),pp. 2642-2645.
131-Ghannoum MA., Rice LB., 1999. Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clinical microbiology reviews,vol. 12(4),pp. 501-517.
132- Katircioglu H., Beyatli Y., Aslim B., Yüksekdag Z., Atici T., 2006. Screening for antimicrobial agent production of some microalgae in freshwater. Internet J Microbiol,vol. 2(2),pp.1-9.
133-Ghasemi Y., Moradian A., Mohagheghzadeh A., Shokravi S., Morowvat MH., 2007. Antifungal and antibacterial activity of the microalgae collected from paddy fields of Iran: characterization of antimicrobial activity of Chroococcus dispersus.
134-Washida K., Koyama T., Yamada K., Kita M., Uemura D., 2006. Karatungiols A and B, two novel antimicrobial polyol compounds, from the symbiotic marine dinoflagellate Amphidinium sp. Tetrahedron letters,vol. 47(15),pp. 2521-2525.
135-Abe M., Inoue D., Matsunaga K., Ohizumi Y., Ueda H., Asano T., et al., 2002. Goniodomin A, an antifungal polyether macrolide, exhibits antiangiogenic activities via inhibition of actin reorganization in endothelial cells. Journal of cellular physiology,vol. 190(1),pp. 109-116.
136- Nagai H., Mikami Y., Yazawa K., Gonoi T., Yasumoto T., 1993. Biological activities of novel polyether antifungals, gambieric acids A and B from a marine dinoflagellate Gambierdiscus toxicus. The Journal of antibiotics,vol. 46(3),pp. 520-522.
137-Abedin RM., Taha HM., 2008. Antibacterial and antifungal activity of Cyanobacteria and green microalgae. Evaluation of medium components by ivaric-Burman design for antimicrobial activity of Spirulina platensis. Global hournal of Biotechnology and Biochemistry.
138- Najdenski HM., Gigova LG., Iliev II., Pilarski PS., Lukavský J., Tsvetkova IV., et al., 2013. Antibacterial and antifungal activities of selected microalgae and cyanobacteria. International Journal of Food Science & Technology,vol. 48(7),pp. 1533-1540.
139-Smulders F., Barendsen P., Van Logtestijn J., Mossel D., Van Der Marel G., 1986. Review: Lactic acid: Considerations in favour of its acceptance as a meat decontamininant. International Journal of Food Science & Technology,vol. 21(4),pp. 419-436.
140- Cherrington C., Hinton M., Mead G., Chopra I., 1991. Organic acids: chemistry, antibacterial activity and practical applications. Advances in Microbial Physiology,vol. 32,pp. 87-108.
141-Afolayan AF., Bolton JJ., Lategan CA., Smith PJ., Beukes DR., 2008. Fucoxanthin, tetraprenylated toluquinone and toluhydroquinone metabolites from Sargassum heterophyllum inhibit the in vitro growth of the malaria parasite Plasmodium falciparum. Zeitschrift für Naturforschung C, vol. 63(11-12),pp. 848-852.
142-Vonthron-Sénécheau C., Kaiser M., Devambez I., Vastel A., Mussio I., Rusig A-M., 2011. Antiprotozoal activities of organic extracts from French marine seaweeds. Marine drugs,vol. 9(6),pp. 922-933.
143-Govenkar MB., Wahidulla S., Constituents of Chondria armata. Phytochemistry,vol. 54(8),pp. 979-981.
144-Khanavi M., Toulabi PB., Abai MR., Sadati N., Hadjiakhoondi F., Hadjiakhoondi A., et al., 2011. Larvicidal activity of marine algae, Sargassum swartzii and Chondria dasyphylla against malaria vector Anopheles stephensi.
145-Afolayan AF., Mann MG., Lategan CA., Smith PJ., Bolton JJ., Beukes DR., 2009. Antiplasmodial halogenated monoterpenes from the marine red alga Plocamium cornutum. Phytochemistry,vol. 70(5),pp. 597-600.
146- Richardson JS., 1993. Free radicals in the genesis of Alzheimer's diseasea. Annals of the New York Academy of Sciences,vol. 695(1),pp. 73-76.
147-Kohen R., Nyska A., 2002. Invited review: Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicologic pathology, vol. 30(6),pp. 620-650.
148-Sithranga Boopathy N., Kathiresan K., 2011. Anticancer drugs from marine flora: an overview. Journal of oncology.
149- Athukorala Y., Kim K-N., Jeon Y-J., 2006. Antiproliferative and antioxidant properties of an enzymatic hydrolysate from brown alga, Ecklonia cava. Food and Chemical Toxicology,vol. 44(7),pp. 1065-1074.
150-Pooja S., 2014. Algae used as medicine and food-a short review. J Pharm Sci Res, vol. 6(3335), pp. 20.
151- Metting Jr F., 1996. Biodiversity and application of microalgae. Journal of industrial microbiology,vol. 17(5-6),pp. 477-489.
152-STOLZ P., OBERMAYER B., 2005. Manufacturing microalgae for skin care. Cosmetics and toiletries,vol. 120(3),pp. 99-106.
153-Olaizola M., 2003. Commercial development of microalgal biotechnology: from the test tube to the marketplace. Biomolecular engineering,vol. 20(4),pp. 459-466.
154- Jensen A., 1993. editor Present and future needs for algae and algal products. Fourteenth International Seaweed Symposium. Springer.
155- Rasala BA., Muto M., Lee PA., Jager M., Cardoso RM., Behnke CA., et al., 2010. Production of therapeutic proteins in algae, analysis of expression of seven human proteins in the chloroplast of Chlamydomonas reinhardtii. Plant biotechnology journal, vol. 8(6),pp. 719-733.
156- Sivakumar G., Xu J., Thompson RW., Yang Y., Randol-Smith P., Weathers PJ., 2012. Integrated green algal technology for bioremediation and biofuel. Bioresource technology, 107:1-9.
157- Bozbas K., 2008. Biodiesel as an alternative motor fuel: Production and policies in the European Union. Renewable and Sustainable Energy Reviews,vol. 12(2),pp. 542-552.
158- Weissman J., 1984. Screening for lipid yielding microalgae: Activities for 1983.
159- Markley KS., 1960. Fatty acids: their chemistry, properties, production and uses: Interscience.
160- Sheehan J., Dunahay T., Benemann J., Roessler P., 1998. A look back at the US Department of Energy's aquatic species program: biodiesel from algae: National Renewable Energy Laboratory Golden.
161- Tabatabaei M., Tohidfar M., Jouzani GS., Safarnejad M., Pazouki M., 2011. Biodiesel production from genetically engineered microalgae: future of bioenergy in Iran. Renewable and Sustainable Energy Reviews, vol. 15(4),pp. 1918-1927.
162- Ardebili MS., Ghobadian B., Najafi G., Chegeni A., 2011. Biodiesel production potential from edible oil seeds in Iran. Renewable and Sustainable Energy Reviews, vol. 15(6),pp. 3041-3044.
163- Moazami N., Ashori A., Ranjbar R., Tangestani M., Eghtesadi R., Nejad AS., 2012. Large-scale biodiesel production using microalgae biomass of Nannochloropsis. Biomass and bioenergy,vol. 39,pp. 449-453.
164- Avami A., 2012. A model for biodiesel supply chain: A case study in Iran. Renewable and Sustainable Energy Reviews,vol. 16(6),pp. 4196-4203.
165- Hoffmann JP., 1998. Wastewater treatment with suspended and nonsuspended algae. Journal of Phycology,vol. 34(5),pp. 757-763.
166- Lau P., Tam N., Wong Y., 1995. Effect of algal density on nutrient removal from primary settled wastewater. Environmental Pollution, vol. 89(1),pp. 59-66.
167- González LE., Cañizares RO., Baena S., 1997. Efficiency of ammonia and phosphorus removal from a Colombian agroindustrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphus. Bioresource Technology,vol. 60(3),pp. 259-262.
168- Lee K., Lee C-G., 2001. Effect of light/dark cycles on wastewater treatments by microalgae. Biotechnology and Bioprocess Engineering,vol. 6(3),pp. 194-199.
169- Jimenez-Perez M., Sanchez-Castillo P., Romera O., Fernandez-Moreno D., Pérez-Martınez C., 2004. Growth and nutrient removal in free and immobilized planktonic green algae isolated from pig manure. Enzyme and Microbial Technology, vol. 34(5),pp. 392-398.
170- Inthorn D., Sidtitoon N., Silapanuntakul S., Incharoensakdi A., 2002. Sorption of mercury, cadmium and lead by microalgae. Science Asia,vol. 28,pp. 253-261.
171- Yılmaz AB., Işık O., Sayın S., 2005. Bioaccumulation and Toxicity of Different Copper Concentrations in Tetraselmis chuii. Su Ürünleri Dergisi,vol. 22(3).
172- Mehta S., Gaur J., 2005. Use of algae for removing heavy metal ions from wastewater: progress and prospects. Critical reviews in biotechnology,vol. 25(3),pp. 113-152.
173- Chojnacka K., Chojnacki A., Górecka H., 2004. Trace element removal by Spirulina sp. from copper smelter and refinery effluents. Hydrometallurgy,vol. 73(1),pp. 147-153.
174- Jin ZP., Luo K., Zhang S., Zheng Q., Yang H., 2012. Bioaccumulation and catabolism of prometryne in green algae. Chemosphere,vol. 87(3),pp. 278-284.
175- Hong Y-W., Yuan D-X., Lin Q-M., Yang T-L., 2008. Accumulation and biodegradation of phenanthrene and fluoranthene by the algae enriched from a mangrove aquatic ecosystem. Marine Pollution Bulletin,vol. 56(8),pp. 1400-1405.
176- Jiménez N., Viñas M., Bayona JM., Albaiges J., Solanas AM., 2007. The Prestige oil spill: bacterial community dynamics during a field biostimulation assay. Applied Microbiology and Biotechnology,vol. 77(4),pp. 935-945.