ریزمقیاس نمایی دادههای بارندگی ماهواره ای TRMM برپایه روابط ناایستا بین بارندگی و ویژگیهای سطح زمین
محورهای موضوعی : توسعه سیستم های مکانیبهاره زنجانی 1 , حسام سید کابلی 2 , محسن رشیدیان 3
1 - دانشجوی کارشناسی ارشد مهندسی و مدیریت منابع آب، دانشکده مهندسی عمران، دانشگاه صنعتی جندی شاپور دزفول
2 - استادیار گروه عمران آب، دانشکده مهندسی عمران، دانشگاه صنعتی جندی شاپور دزفول
3 - مربی گروه مهندسی نقشه برداری، دانشکده مهندسی عمران، دانشگاه صنعتی جندی شاپور دزفول
کلید واژه: رگرسیون وزنی جغرافیایی, حوزه رودخانه دز, پوشش گیاهی, بارش ماهواره ای, دمای سطح زمین,
چکیده مقاله :
داده های بارش ماهواره ای به صورت گسترده جهت تخمین بارش بخصوص در مناطقی که پراکنش ایستگاه های باران سنجی نامناسب و ناکافی هستند، مورداستفاده قرار می گیرند. بااینوجود، وضوح مکانی کم این نوع داده ها، کاربرد آنها را با محدودیت هایی در مطالعات هیدرولوژیکی حوزه های آبریز و در مقیاس منطقه ای مواجه کرده است. بنابراین حفظ دقت برآورد بارش توسط ماهواره ها و دستیابی به مقیاس مکانی مناسب در مطالعات هیدرولوژیک هدف اصلی این مطالعه قرار گرفت. در این تحقیق روش رگرسیون وزنی جغرافیایی (GWR) برای ریز مقیاس نمایی مکانی دادههای بارندگی ماهوارهای تی آر ام ام (TRMM-3B42V7) در سال آبی 90-89 برای حوزه آبریز سد دز واقع در جنوب غرب ایران مورد ارزیابی قرار گرفت. ریزمقیاس نمایی با ایجاد روابط ناایستا بین بارش TRMM و ویژگی های بهدستآمده از مدل ارتفاع رقومی (DEM)، شاخص پوشش گیاهی نرمال شده (NDVI)، شاخص گیاهی بهبود یافته (EVI) و دمای سطح زمین (LST) انجام شد. نتایج نشان می دهند که داده های بارش ریزمقیاس شده در مقیاس مکانی 1 کیلومتر بهطور معنیداری تفکیک مکانی را بهبود داده و با داده های مشاهداتی ایستگاه های باران سنجی از تطابق خوبی برخوردارند. به طوری که برای بارش تجمعی 16 روزه، مقادیر آماره های جذر میانگین مربعات خطا (RMSE) و میانگین مطلق خطا (MAE) به ترتیب برابر با 22.7 و 7.45 میلیمتر هستند. بااینوجود میزان دقت مدل در مکان ها مختلف متفاوت بوده و به شرایط پوشش گیاهی وابستگی زیادی دارد.
Satellite-based precipitation dataset has been widely used to estimate precipitation, especially over regions with sparse rain gauge networks. However, the low spatial resolution of these datasets has limited their application in localized regions and watersheds. So, having an accurate estimation of precipitation by satellites along with the adequate spatial scale in hydrologic studies is the main goal of this study. In this research, Geographically weighted regression (GWR) method was investigated to downscale the Tropical Rainfall Measuring Mission (TRMM-3B42 Version 7) over the DEZ river basin in the southwest of IRAN for 2010-2011. Downscaling was performed based on the non-stationary relationships between the TRMM precipitation and the Digital elevation model (DEM) derived products, the Normalized difference vegetation index (NDVI), the Enhanced vegetation index (EVI) and the Land surface temperature (LST). The result shows that the downscale precipitation at 1 km spatial scale had significantly improved spatial resolution, and agreed well with data from the rain gauge stations. For the 16-day precipitation, Mean square root means square error (RMSE) and absolute mean error (MAE) values are 22.7 mm and 7.45 mm, respectively. However, the accuracy of the model varies in a different location and depends on the vegetation condition.
عسکری زاده د.، ح. ارزانی، م. جعفری، ج. بذرافشان و آ. ک. پرنتایس. 1397. بررسی گذشته، حال و آینده تغییرات پوشش گیاهی مراتع البرز مرکزی در ارتباط با تغییر اقلیم. نشریه سنجشازدور و سامانه اطلاعات جغرافیایی در منابع طبیعی، 9(3): 1-18.
مددی غ.، س. حمزه و ع. ا. نوروزی. 1394. ارزیابی بارش در مقیاسهای روزانه، ماهانه و سالانه با استفاده از تصاویر ماهوارهای (مطالعه موردی: حوزه مرزی غرب ایران). نشریه سنجشازدور و سامانه اطلاعات جغرافیایی در منابع طبیعی، 6(2): 59-74.
میجانی ن.، س. حمزه و م. کریمی فیروزجانی. 1398. کمی سازی تأثیرپذیری پارامترهای سطحی و شرایط اقلیمی بر دمای سطح زمین با استفاده از دادههای انعکاسی و حرارتی سنجشازدور. نشریه سنجشازدور و سامانه اطلاعات جغرافیایی در منابع طبیعی، 10(1): 36-59.
Agam N, Kustas WP, Anderson MC, Li F, Neale CM. 2007. A vegetation index based technique for spatial sharpening of thermal imagery. Remote Sensing of Environment, 107(4): 545-558.
Brunsdon C, Fotheringham AS, Charlton ME. 1996. Geographically weighted regression: a method for exploring spatial nonstationarity. Geographical Analysis, 28(4): 281-298.
Chen C, Zhao S, Duan Z, Qin Z. 2015. An improved spatial downscaling procedure for TRMM 3B43 precipitation product using geographically weighted regression. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(9): 4592-4604.
Chen F, Liu Y, Liu Q, Li X. 2014. Spatial downscaling of TRMM 3B43 precipitation considering spatial heterogeneity. International Journal of Remote Sensing, 35(9): 3074-3093.
Duan Z, Bastiaanssen W. 2013. First results from Version 7 TRMM 3B43 precipitation product in combination with a new downscaling–calibration procedure. Remote Sensing of Environment, 131: 1-13.
Foody G. 2003. Geographical weighting as a further refinement to regression modelling: An example focused on the NDVI–rainfall relationship. Remote sensing of Environment, 88(3): 283-293.
Goodrich DC, Faurès J-M, Woolhiser DA, Lane LJ, Sorooshian S. 1995. Measurement and analysis of small-scale convective storm rainfall variability. Journal of Hydrology, 173(1-4): 283-308.
Guan H, Wilson JL, Xie H. 2009. A cluster-optimizing regression-based approach for precipitation spatial downscaling in mountainous terrain. Journal of Hydrology, 375(3-4): 578-588.
Hewitson B, Crane RG. 1996. Climate downscaling: techniques and application. Climate Research, 7(2): 85-95.
Huffman GJ, Adler RF, Arkin P, Chang A, Ferraro R, Gruber A, Janowiak J, McNab A, Rudolf B, Schneider U. 1997. The global precipitation climatology project (GPCP) combined precipitation dataset. Bulletin of the American Meteorological Society, 78(1): 5-20.
Huffman GJ, Adler RF, Bolvin DT, Gu G. 2009. Improving the global precipitation record: GPCP version 2.1. Geophysical Research Letters, 36(17): 1-5.
Huffman GJ, Bolvin DT, Nelkin EJ, Wolff DB, Adler RF, Gu G, Hong Y, Bowman KP, Stocker EF. 2007. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. Journal of Hydrometeorology, 8(1): 38-55.
Hunink J, Immerzeel W, Droogers P. 2014. A High-resolution Precipitation 2-step mapping Procedure (HiP2P): Development and application to a tropical mountainous area. Remote Sensing of Environment, 140: 179-188.
Immerzeel W, Rutten M, Droogers P. 2009. Spatial downscaling of TRMM precipitation using vegetative response on the Iberian Peninsula. Remote Sensing of Environment, 113(2): 362-370.
Jia S, Zhu W, Lű A, Yan T. 2011. A statistical spatial downscaling algorithm of TRMM precipitation based on NDVI and DEM in the Qaidam Basin of China. Remote sensing of Environment, 115(12): 3069-3079.
Jing W, Zhang P, Jiang H, Zhao X. 2017. Reconstructing satellite-based monthly precipitation over Northeast China using machine learning algorithms. Remote Sensing, 9(8): 781.
Kubota T, Shige S, Hashizume H, Aonashi K, Takahashi N, Seto S, Hirose M, Takayabu YN, Ushio T, Nakagawa K. 2007. Global precipitation map using satellite-borne microwave radiometers by the GSMaP project: Production and validation. IEEE Transactions on Geoscience and Remote Sensing, 45(7): 2259-2275.
Kummerow C, Barnes W, Kozu T, Shiue J, Simpson J. 1998. The tropical rainfall measuring mission (TRMM) sensor package. Journal of Atmospheric and Oceanic Technology, 15(3): 809-817.
Kummerow C, Simpson J, Thiele O, Barnes W, Chang ATC, Stocker E, Adler RF, A. Hou, Kakar R, Wentz F, Ashcroft P, Kozu T, Hong Y, Okamoto K, Iguchi T, Kuroiwa H, Im E, Haddad Z, Huffman G, Ferrier B, Olson WS, Zipser E, Smith EA, Wilheit TT, North G, Krishnamurti T, Nakamura K. 2000. The Status of the Tropical Rainfall Measuring Mission (TRMM) after Two Years in Orbit. Journal of Applied Meteorology, 39(12): 1965–1982.
Kustas WP, Norman JM, Anderson MC, French AN. 2003. Estimating subpixel surface temperatures and energy fluxes from the vegetation index–radiometric temperature relationship. Remote Sensing of Environment, 85(4): 429-440.
Li S, Zhao Z, Miaomiao X, Wang Y. 2010. Investigating spatial non-stationary and scale-dependent relationships between urban surface temperature and environmental factors using geographically weighted regression. Environmental Modelling & Software, 25(12): 1789-1800.
Li Y, Zhang Y, He D, Luo X, Ji X. 2019. Spatial Downscaling of the Tropical Rainfall Measuring Mission Precipitation Using Geographically Weighted Regression Kriging over the Lancang River Basin, China. Chinese Geographical Science, 29(3): 446-462.
Merlin O, Al Bitar A, Walker JP, Kerr Y. 2009. A sequential model for disaggregating near-surface soil moisture observations using multi-resolution thermal sensors. Remote Sensing of Environment, 113(10): 2275-2284.
Michaelides S, Levizzani V, Anagnostou E, Bauer P, Kasparis T, Lane J. 2009. Precipitation: Measurement, remote sensing, climatology and modeling. Atmospheric Research, 94(4): 512-533.
Nakaya T. 2015. Geographically weighted generalised linear modelling. Geocomputation: A practical primer, 217: 20.
Piles M, Sánchez N, Vall-llossera M, Camps A, Martínez-Fernández J, Martínez J, González-Gambau V. 2014. A downscaling approach for SMOS land observations: Evaluation of high-resolution soil moisture maps over the Iberian Peninsula. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(9): 3845-3857.
Richard Y, Poccard I. 1998. A statistical study of NDVI sensitivity to seasonal and interannual rainfall variations in Southern Africa. International Journal of Remote Sensing, 19(15): 2907-2920.
Wilby RL, Wigley T. 1997. Downscaling general circulation model output: a review of methods and limitations. Progress in Physical Geography, 21(4): 530-548.
Xu S, Wu C, Wang L, Gonsamo A, Shen Y, Niu Z. 2015. A new satellite-based monthly precipitation downscaling algorithm with non-stationary relationship between precipitation and land surface characteristics. Remote Sensing of Environment, 162: 119-140.
Zhan W, Chen Y, Wang J, Zhou J, Quan J, Liu W, Li J. 2012. Downscaling land surface temperatures with multi-spectral and multi-resolution images. International Journal of Applied Earth Observation and Geoinformation, 18: 23-36.
Zhan W, Chen Y, Zhou J, Wang J, Liu W, Voogt J, Zhu X, Quan J, Li J. 2013. Disaggregation of remotely sensed land surface temperature: Literature survey, taxonomy, issues, and caveats. Remote Sensing of Environment, 131: 119-139.
Zhang Q, Shi P, Singh VP, Fan K, Huang J. 2017. Spatial downscaling of TRMM‐based precipitation data using vegetative response in Xinjiang, China. International Journal of Climatology, 37(10): 3895-3909.
Zhang T, Li B, Yuan Y, Gao X, Sun Q, Xu L, Jiang Y. 2018. Spatial downscaling of TRMM precipitation data considering the impacts of macro-geographical factors and local elevation in the Three-River Headwaters Region. Remote Sensing of Environment, 215: 109-127.
Zhang Y, Li Y, Ji X, Luo X, Li X. 2018. Fine-resolution precipitation mapping in a mountainous watershed: geostatistical downscaling of TRMM products based on environmental variables. Remote Sensing, 10(1): 119.
Zhao Z, Gao J, Wang Y, Liu J, Li S. 2015. Exploring spatially variable relationships between NDVI and climatic factors in a transition zone using geographically weighted regression. Theoretical and Applied Climatology, 120(3-4): 507-519.
Zhou X, Ni G-H, Shen C, Sun T. 2017. Remapping annual precipitation in mountainous areas based on vegetation patterns: a case study in the Nu River basin. Hydrology and Earth System Sciences, 21(2): 999-1015.
Zorita E, von Storch H. 1997. A survey of statistical downscaling techniques. GKSS-Forschungszentrum, 42 pp.
_||_