• XML

    isc pubmed crossref medra doaj doaj
  • List of Articles


      • Open Access Article

        1 - Effect of Particle Volume Fraction on the Tensile Properties of Composite Al6061/SiC Materials by Hot Extrusion
        محمد رضا ستاری محمد رنجبران
        In the present study the effect of phase volume fraction on the reinforcement of microstructure and tensile properties of composite extrusion process Al6061/SiC has been studied. For this purpose, the base alloy Al6061 using pure aluminum ingots, silicon, of Al-50% Mg, More
        In the present study the effect of phase volume fraction on the reinforcement of microstructure and tensile properties of composite extrusion process Al6061/SiC has been studied. For this purpose, the base alloy Al6061 using pure aluminum ingots, silicon, of Al-50% Mg, Al-10% Cr and a thin copper rod was prepared. Next, the composite Al6061/5% SiC, Al6061/10% SiC, Al6061/15% SiC and Al6061/20% SiC through the addition of various amounts of silicon carbide particles was prepared by cast stirring. For composite samples containing different volume fractions of the reinforced SiC, hot extrusion operation was performed. Evaluation of microstructure using light and electron microscope was performed. During the study, it was observed that with the increasing amount of reinforcement, porosity and pores in the microstructure was increased. The extrusion process reduces the amount of porosity as well as creating fine reinforcement. In order to investigate the effect of extrusion process on the mechanical properties of the composite, tensile test were used. Results showed that, with increasing SiC weight to 5 percent, it will increase ultimate tensile strength of the composite. In addition, it is shown that the extrusion process will result a homogenous particles distribution which in turn will improve the tensile stress. Manuscript profile
      • Open Access Article

        2 - Applying Differential Transform Method on the Effect of the Elastic Foundation on the out - Plane Displacement of the Functionally Graded Circular Plates
        سمیه عباسی فاطمه فرهت نیا سعید رسولی جزی
        In this paper, the effect of elastic foundation on the out of plane displacement of functionally graded circular plates using differential transform method is presented. Differential transform method is a semi-analytical-numerical solution technique that is capable to s More
        In this paper, the effect of elastic foundation on the out of plane displacement of functionally graded circular plates using differential transform method is presented. Differential transform method is a semi-analytical-numerical solution technique that is capable to solve various types of differential equations. Using this method, governing differential equations are transformed into recursive relations and boundary conditions are changed into algebraic equations. Since the problem of plates on elastic foundation have a great practical importance in modern engineering structures and Winkler foundation model is widely used, plate is assumed on Winkler elastic foundation. In this article functionally graded plate is considered in which material properties vary through the thickness direction by power-law distribution. Analysis results of out of plane displacement of plate on elastic foundation under uniform transverse loads are obtained in different terms of foundation stiffness, material properties and boundary conditions. In order to validate the solution technique, results obtained are compared with the results of the finite element method (FEM). Manuscript profile
      • Open Access Article

        3 - Numerical and Experimental Evaluation of Residual Stress and Fatigue Strength of Steel CK35 in Shot Peening Process
        مهدی تاجداری حمیدرضا بهاروندی علیرضا مرادخانی
        In shot peening process the work piece surface is struck by a large number of balls and compressive residual stress is generated on the surface. So, mechanical properties such as fatigue strength, stress corrosion resistance, smooth shape and ... will improve. In this p More
        In shot peening process the work piece surface is struck by a large number of balls and compressive residual stress is generated on the surface. So, mechanical properties such as fatigue strength, stress corrosion resistance, smooth shape and ... will improve. In this paper, the balls with a speed of 100 to 200 m/s were struck on the steel samples and fatigue strength compared with specimens without shot peening. The results indicated a significant increase in fatigue strength. Also the balls deep changes on the samples were calculated using ANSYS software and the results were compared with the experimental results. Results showed that, if the ball speed is 100 m/s, it leads 25% increase in fatigue strength while the residual stress will increase to 250 MPa. Furthermore, if the ball speed is 200 m/s, fatigue strength and residual stress increase up to 40% and 300 MPa, respectively. It is also concluded that the stress in the balls is twice as the work piece surface residual stress. Manuscript profile
      • Open Access Article

        4 - Experimental Analysis of Crashworthiness Behavior of Energy Absorber Tubes Under 3D Oblique Load
        ابوالفضل خلخالی علیرضا سالور
        Actual applications of the energy absorbers showed that actual loads are not applied in the form of pure axial compression, pure bending or pure torsion. In reality, an energy absorber component may be subjected to combined loading of compression, bending and torsion. A More
        Actual applications of the energy absorbers showed that actual loads are not applied in the form of pure axial compression, pure bending or pure torsion. In reality, an energy absorber component may be subjected to combined loading of compression, bending and torsion. A number of previous articles have investigated the behavior of energy absorbers under oblique loading. In such cases, the oblique load was considered as 2D load determined with one angle parameter to the profile of specimen. However, in reality, it is possible that the energy absorber component be under a 3D oblique load condition with three spatial components determined by two angle parameter in 3D space. In present paper, crashworthiness behavior of thin walled tubes is experimentally analyzed under 3D oblique load. To perform this job, a fixture was designed and installed on the universal tensile and compression testing machine. All tests were conducted in quasi-static form and finally a diagram of force and displacement and crushing modes were extracted and the effect of oblique load aspects on energy absorbing characteristics was investigated. Manuscript profile
      • Open Access Article

        5 - Experimental Study and FEM Simulation of the Effect of Significant Parameters in the Thixoforging of the Gearbox Cap
        امین کلاه دوز سلمان نوروزی محمد بخشی جویباری سید جمال حسینی پور
        Semi-solid forming processes are now used for producing near net shape parts especially in the automotive and aircraft industries. Non Newtonian rheology of semisolid alloys and its dependence on the various parameters such as reheating cycle, method used to produce non More
        Semi-solid forming processes are now used for producing near net shape parts especially in the automotive and aircraft industries. Non Newtonian rheology of semisolid alloys and its dependence on the various parameters such as reheating cycle, method used to produce non-dendritic structure, thermo-shear history etc. have made the simulation of the flow behavior of semisolid material a difficult mater in engineering. One of the semi-solid forming processes is thixoforging process. Thixoforming takes place between liquidous and solidous temperature and liquid phase and solid one that exists at the same time. The significant parameters in this method can be strain rate, friction and temperature terms. In this research, the simulation of thixoforging process is done using Deform-3D software and parameters such as friction factor, process temperature and rams speeds are studied. In order to verify the model, thixoforging tests were conducted with various parameters and under isothermal conditions on the A356 Alloy. The comparison of numerical results at different solid fractions with experimental data is shown. These simulations can provide an accurate model of the process. Also the simulation results had shown the effects of various parameters. Results showed that increasing the mould temperature, causes more inhomogeneous microstructure and therefore the hardness and forming force decreased %12.5 and %20.6 respectively Manuscript profile
      • Open Access Article

        6 - Nonlinear Vibration Analysis of Composite Plates with SMA Wires, Considering Instantaneous Variations of the Martensite Volume Fraction
        محمد شرعیات سارا سمایی مجتبی مرادی
        In the past few years, extensive improvements have been accomplished in reinforcing the structures through using shape memory alloys (SMAs). These materials absorb or dissipate energy through establishing a reversible hysteresis loop during a cyclic mechanical loading. More
        In the past few years, extensive improvements have been accomplished in reinforcing the structures through using shape memory alloys (SMAs). These materials absorb or dissipate energy through establishing a reversible hysteresis loop during a cyclic mechanical loading. This unique characteristic of the SMAs has made them appropriate for sensing, actuation, absorbing the impact energy, and vibration damping applications. Instantaneous and local variations of the phases of the SMA wire in the successive loading and unloading events of the vibration have not been accurately investigated by the works published so far. In the present paper, vibrations of composite plates reinforced by SMA wires are investigated, by employing an algorithm that overcomes the mentioned shortcomings. Governing equations are derived based on the Hamilton’s principle and the first-order shear-deformation plate theory. Furthermore, Brinson’s constitutive equations are used to model material properties of the SMA and the time-dependent partial deferential equations are solved using Newmark’s numerical time integration method. The governing equations are solved by a finite element code written in MATLAB software. In the present research, the influence of the instantaneous variations of the volume fraction of the Martensite volume fraction due to variations of the stress components on the material properties of the SMA, hybrid composite, and the recovery load is considered for the first time. Finally, effect of the volume fraction of the SMA wires of each layer and the influence of the amplitude of the abruptly applied load on the vibration behavior of the composite plate is investigated, too. Manuscript profile