طراحی سیستم تشخیص نفوذ مبتنی بر آنومالی با استفاده از ماشین بردار پشتیبان و الگوریتم بهینهسازی ملخ در اینترنت اشیا
محورهای موضوعی : مهندسی کامپیوترسپهر شریفی 1 , سولماز قیصری 2 *
1 - دانشجوی کارشناسی ارشد مهندسی فناوری اطلاعات، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، ایران
2 - استادیار گروه کامپیوتر، دانشکده فنی مهندسی ، دانشگاه آزاد اسلامی واحد پردیس، ایران
کلید واژه: اینترنت اشیا, ماشین بردار پشتیبان, تشخیص نفوذ مبتنی بر آنومالی, الگوریتم بهینه سازی ملخ,
چکیده مقاله :
امروزه شبکههای کامپیوتری نقش مهم و کاربردی در ارتباطات و تبادل دادهها دارند و در زندگی انسانها انواع مختلفی از شبکههای کامپیوتری پا به عرصه وجود گذاشته است که یکی از آنها شبکه اینترنت اشیاء است. در اینترنت اشیا گرههای شبکه میتوانند اشیا هوشمند باشد و از این نظر این شبکه دارای گرههای زیادی است و ترافیک بالایی در این شبکه وجود دارد. مانند هر شبکه کامپیوتری، اینترنت اشیا با چالشها و مشکلات خاص خود مواجه است که یکی از آنها مسأله نفوذ به شبکه و ایجاد اختلال در آن است. در این پایاننامه تمرکز بر روی تشخیص نفوذ مبتنی بر آنومالی در شبکه اینترنت اشیا با استفاده از دادهکاوی است. در این پژوهش پس از جمعآوری و آمادهسازی دادهها از ماشین بردار پشتیبان بهبودیافته با الگوریتم بهینهسازی ملخ به عنوان روش پیشنهادی در جهت تشخیص نفوذ مبتنی بر آنومالی در اینترنت اشیا استفاده میشود و الگوریتم بهینهسازی ملخ پارامترهای ماشین بردار پشتیبان را به صورت بهینه تعیین میکند و نتایج با طبقهبندهای بگینگ و k- نزدیکترین همسایه و ماشین بردار پشتیبان پایه بر اساس انواع خطا و تحلیل آماری خطا مورد مقایسه قرار میگیرد. نتایج شبیهسازی نشان از دقت 97.2% در روش پیشنهادی و عملکرد بهتر در مقایسه با سایر روشها دارد.
Computer networks play an important and practical role in communication and data exchange, and they also share resources with complete ease. Today, various types of computer networks have emerged, one of which is the Internet of Things. In the Internet of Things, network nodes can be smart objects, and in this sense, this network has many nodes and there is a lot of traffic in this network. Like any computer network, it faces its own challenges and problems, one of which is the issue of network intrusion and disruption. This dissertation focuses on detecting anomaly-based intrusion into the Internet of Things using data mining. In this study, after collecting and preparing data, the improved support vector machine with grasshopper optimization algorithm is used as a proposed method to detect anomaly-based intrusion in the Internet of Things. The bagging and k-nearest neighbor classifiers and Basic SVM are compared based on error types and standard performance criteria. The simulation results show 97.2% accuracy in the proposed method and better performance compared to other methods.
[1] A. J. Siddiqui and A. Boukerche, "TempoCode-IoT: temporal codebook-based encoding of flow features for intrusion detection in Internet of Things," Cluster Computing, vol. 24, no. 1, pp. 17-35, 2021, doi: 10.1007/s10586-020-03153-8.
[2] A. Khraisat and A. Alazab, "A critical review of intrusion detection systems in the internet of things: techniques, deployment strategy, validation strategy, attacks, public datasets and challenges," Cybersecurity, vol. 4, no. 1, pp. 1-27, 2021, doi: 10.1186/s42400-021-00077-7.
[3] B. S. Khater, A. Wahab, A. W. Bin, M. Y. I. B. Idris, M. A. Hussain, and A. A. Ibrahim, "A lightweight perceptron-based intrusion detection system for fog computing," Applied Sciences, vol. 9, no. 1, p. 178, 2019, doi: 10.3390/app9010178.
[4] J. Bard, “What Is Data Mining?” PowerKids Press, 2018.
[5] M. Roopak, G. Y. Tian and J. Chambers, "An Intrusion Detection System Against DDoS Attacks in IoT Networks," 10th Annual Computing and Communication Workshop and Conference (CCWC), 2020, pp. 0562-0567, doi: 10.1109/CCWC47524.2020.9031206.
[6] M. Safaldin, M. Otair, and L. Abualigah, "Improved binary gray wolf optimizer and SVM for intrusion detection system in wireless sensor networks," Journal of ambient intelligence and humanized computing, vol. 12, no. 2, pp. 1559-1576, 2021, doi: 10.1007/s12652-020-02228-z.
[7] N. Huber, S. R. Kalidindi, B. Klusemann, and C. J. Cyron, ”Machine Learning and Data Mining in Materials Science,” Frontiers Media SA, 2020.
[8] N. Islam et al., "Towards machine learning based intrusion detection in IoT networks," Comput. Mater. Contin, vol. 69, pp. 1801-1821, 2021, doi: 10.32604/cmc.2021.018466.
[9] S. Saremi, S. Mirjalili, and A. Lewis, "Grasshopper optimisation algorithm: Theory and application," Advances in Engineering Software, vol. 105, pp. 30-47, 2017, doi: 10.1016/j.advengsoft.2017.01.004.
[10] Sh. Ghafarian and K. Rezaei and A. Kafash, ” A survey on intrusion detection approaches in IOT”, Third National Conference on Applied Research in Electrical, Computer and Medical Engineering,2019
[11] V. Kumar, A. K. Das, and D. Sinha, "UIDS: a unified intrusion detection system for IoT environment," Evolutionary Intelligence, vol. 14, no. 1, pp. 47-59, 2021, doi: 10.1007/s12065-019-00291-w.
[12] X. S. Yang, “Introduction to Algorithms for Data Mining and Machine Learning”. Elsevier Science & Technology, 2019.
_||_
[1] A. J. Siddiqui and A. Boukerche, "TempoCode-IoT: temporal codebook-based encoding of flow features for intrusion detection in Internet of Things," Cluster Computing, vol. 24, no. 1, pp. 17-35, 2021, doi: 10.1007/s10586-020-03153-8.
[2] A. Khraisat and A. Alazab, "A critical review of intrusion detection systems in the internet of things: techniques, deployment strategy, validation strategy, attacks, public datasets and challenges," Cybersecurity, vol. 4, no. 1, pp. 1-27, 2021, doi: 10.1186/s42400-021-00077-7.
[3] B. S. Khater, A. Wahab, A. W. Bin, M. Y. I. B. Idris, M. A. Hussain, and A. A. Ibrahim, "A lightweight perceptron-based intrusion detection system for fog computing," Applied Sciences, vol. 9, no. 1, p. 178, 2019, doi: 10.3390/app9010178.
[4] J. Bard, “What Is Data Mining?” PowerKids Press, 2018.
[5] M. Roopak, G. Y. Tian and J. Chambers, "An Intrusion Detection System Against DDoS Attacks in IoT Networks," 10th Annual Computing and Communication Workshop and Conference (CCWC), 2020, pp. 0562-0567, doi: 10.1109/CCWC47524.2020.9031206.
[6] M. Safaldin, M. Otair, and L. Abualigah, "Improved binary gray wolf optimizer and SVM for intrusion detection system in wireless sensor networks," Journal of ambient intelligence and humanized computing, vol. 12, no. 2, pp. 1559-1576, 2021, doi: 10.1007/s12652-020-02228-z.
[7] N. Huber, S. R. Kalidindi, B. Klusemann, and C. J. Cyron, ”Machine Learning and Data Mining in Materials Science,” Frontiers Media SA, 2020.
[8] N. Islam et al., "Towards machine learning based intrusion detection in IoT networks," Comput. Mater. Contin, vol. 69, pp. 1801-1821, 2021, doi: 10.32604/cmc.2021.018466.
[9] S. Saremi, S. Mirjalili, and A. Lewis, "Grasshopper optimisation algorithm: Theory and application," Advances in Engineering Software, vol. 105, pp. 30-47, 2017, doi: 10.1016/j.advengsoft.2017.01.004.
[10] Sh. Ghafarian and K. Rezaei and A. Kafash, ” A survey on intrusion detection approaches in IOT”, Third National Conference on Applied Research in Electrical, Computer and Medical Engineering,2019
[11] V. Kumar, A. K. Das, and D. Sinha, "UIDS: a unified intrusion detection system for IoT environment," Evolutionary Intelligence, vol. 14, no. 1, pp. 47-59, 2021, doi: 10.1007/s12065-019-00291-w.
[12] X. S. Yang, “Introduction to Algorithms for Data Mining and Machine Learning”. Elsevier Science & Technology, 2019.