• فهرست مقالات Flutter analysis

      • دسترسی آزاد مقاله

        1 - On the Aeroelastic Stability of a Two-Directional FG GNP-Enriched Conical Shell
        A.R Shahidi A Darakhsh
        In this article, the supersonic flutter analysis of a truncated conical shell made of polymer enriched with graphene nanoplatelets (GNPs) exposed to supersonic fluid flow is discussed. It is assumed that the mass fraction of the GNPs is functionally graded (FG) along th چکیده کامل
        In this article, the supersonic flutter analysis of a truncated conical shell made of polymer enriched with graphene nanoplatelets (GNPs) exposed to supersonic fluid flow is discussed. It is assumed that the mass fraction of the GNPs is functionally graded (FG) along thickness and length directions according to different dispersion patterns. Modeling of the shell is done using the first-order shear deformation theory (FSDT), the mechanical properties are computed according to the Halpin-Tsai model alongside the rule of the mixture, and the aerodynamic pressure is computed utilizing the piston theory. Utilizing Hamilton’s principle, the boundary conditions and the governing equations are achieved. Harmonic trigonometric functions are used to provide an analytical solution in the circumferential direction and an approximate solution is presented in the meridional direction using the differential quadrature method (DQM). The efficacy of various parameters on the aeroelastic stability are discussed such as the percentage and dispersion pattern of the GNPs and gradient indices. It is observed that to achieve higher aeroelastic stability in the GNP-enriched truncated conical shells, it is better to dispense the GNPs near the small radius and the inner surface of the shell. پرونده مقاله