• فهرست مقالات DWBNNT

      • دسترسی آزاد مقاله

        1 - Electro-Thermo-Dynamic Buckling of Embedded DWBNNT Conveying Viscous Fluid
        A Ghorbanpour Arani M Hashemian
        In this paper, the nonlinear dynamic buckling of double-walled boron-nitride nanotube (DWBNNT) conveying viscous fluid is investigated based on Eringen's theory. BNNT is modeled as an Euler-Bernoulli beam and is subjected to combine mechanical, electrical and thermal lo چکیده کامل
        In this paper, the nonlinear dynamic buckling of double-walled boron-nitride nanotube (DWBNNT) conveying viscous fluid is investigated based on Eringen's theory. BNNT is modeled as an Euler-Bernoulli beam and is subjected to combine mechanical, electrical and thermal loading. The effect of viscosity on fluid-BNNT interaction is considered based on Navier-Stokes relation. The van der Waals (vdW) interaction between the inner and outer nanotubes is taken into account and the surrounding elastic medium is simulated as Winkler and Pasternak foundation. Considering the charge equation for coupling of mechanical and electrical fields, Hamilton's principle is utilized to derive the motion equations based on the von Kármán theory. Dynamic buckling load is evaluated using differential quadrature method (DQM). Results show that dynamic buckling load depends on small scale factor, viscosity, elastic medium parameters and temperature changes. Also, dynamic instability region is discussed for various conditions. پرونده مقاله
      • دسترسی آزاد مقاله

        2 - Electro-Thermo-Mechanical Vibration Analysis of a Foam-Core Smart Composite Cylindrical Shell Containing Fluid
        A Ghorbanpour Arani R Kolahchi
        In this study, free vibration of a foam-core orthotropic smart composite cylindrical shell (SCCS) filled with a non-viscous compressible fluid, subjected to combined electro-thermo-mechanical loads is investigated. Piezoelectric polymeric cylindrical shell, is made from چکیده کامل
        In this study, free vibration of a foam-core orthotropic smart composite cylindrical shell (SCCS) filled with a non-viscous compressible fluid, subjected to combined electro-thermo-mechanical loads is investigated. Piezoelectric polymeric cylindrical shell, is made from polyvinylidene fluoride (PVDF) and reinforced by armchair double walled boron nitride nanotubes (DWBNNTs). Characteristics of the equivalent composite are determined using micro-electro-mechanical models. The poly ethylene (PE) foam-core is modeled based on Winkler and Pasternak foundations. Employing the charge equation for coupling electrical and mechanical fields, the problem is turned into an eigenvalue one, for which analytical frequency equations are derived considering free electrical and simply supported mechanical boundary conditions at circular surfaces at either ends of the cylindrical shell. The influence of electric potential generated, filled-fluid, orientation angle of DWBNNTs, foam-core and a few other parameters on the resonance frequency of SCCS are investigated. Results show that SCCS and consequently the generated Φ improve sensor and actuator applications in several process industries, because it not only increases the vibration frequency, but also extends economic viability of the smart structure. پرونده مقاله
      • دسترسی آزاد مقاله

        3 - Buckling of Piezoelectric Composite Cylindrical Shell Under Electro-thermo-mechanical Loading
        A Ghorbanpour Arani S Shams S Amir M.J Maboudi
        Using principle of minimum total potential energy approach in conjunction with Rayleigh-Ritz method, the electro-thermo-mechanical axial buckling behavior of piezoelectric polymeric cylindrical shell reinforced with double-walled boron-nitride nanotube (DWBNNT) is inves چکیده کامل
        Using principle of minimum total potential energy approach in conjunction with Rayleigh-Ritz method, the electro-thermo-mechanical axial buckling behavior of piezoelectric polymeric cylindrical shell reinforced with double-walled boron-nitride nanotube (DWBNNT) is investigated. Coupling between electrical and mechanical fields are considered according to a representative volume element (RVE)-based micromechanical model. This study indicates how buckling resistance of composite cylindrical shell may vary by applying thermal and electrical loads. Applying the reverse voltage or decreasing the temperature, also, increases the critical axial buckling load. This work showed that the piezoelectric BNNT generally enhances the buckling resistance of the composite cylindrical shell. پرونده مقاله
      • دسترسی آزاد مقاله

        4 - Viscous Fluid Flow-Induced Nonlocal Nonlinear Vibration of Embedded DWBNNTs
        A Ghorbanpour Arani Z Khoddami Maraghi R Kolahchi M Mohammadimehr
        In this article, electro-thermo nonlocal nonlinear vibration and instability of viscous-fluid-conveying double–walled boron nitride nanotubes (DWBNNTs) embedded on Pasternak foundation are investigated. The DWBNNT is simulated as a Timoshenko beam (TB) which inclu چکیده کامل
        In this article, electro-thermo nonlocal nonlinear vibration and instability of viscous-fluid-conveying double–walled boron nitride nanotubes (DWBNNTs) embedded on Pasternak foundation are investigated. The DWBNNT is simulated as a Timoshenko beam (TB) which includes rotary inertia and transverse shear deformation in the formulation. Considering electro-mechanical coupling, the nonlinear governing equations are derived using Hamilton’s principle and discretized based on the differential quadrature method (DQM). The lowest four frequencies are determined for clamped-clamped boundary condition. The effects of dimensionless small scale parameter, elastic medium coefficient, flow velocity, fluid viscosity and temperature change on the imaginary and real components of frequency are also taken into account. Results indicate that the electric potential increases with decreasing nonlocal parameter. It is also worth mentioning that decreasing nonlocal parameter and existence of Winkler and Pasternak foundation can enlarge the stability region of DWBNNT. پرونده مقاله