• فهرست مقالات Axially functionally graded

      • دسترسی آزاد مقاله

        1 - Vibration Analysis of Rotary Tapered Axially Functionally Graded Timoshenko Nanobeam in Thermal Environment
        N Shafiei M Hamisi M Ghadiri
        In this paper, vibration analysis of rotary tapered axially functionally graded (AFG) Timoshenko nanobeam is investigated in a thermal environment based on nonlocal theory. The governing equations of motion and the related boundary conditions are derived by means of Ham چکیده کامل
        In this paper, vibration analysis of rotary tapered axially functionally graded (AFG) Timoshenko nanobeam is investigated in a thermal environment based on nonlocal theory. The governing equations of motion and the related boundary conditions are derived by means of Hamilton’s principle based on the first order shear deformation theory of beams. The solution method is considered using generalized differential quadrature element (GDQE) method. The accuracy of results are validated by other results reported in other references. The effect of various parameters such as AFG index, rate of cross section change, angular velocity, size effect and boundary conditions on natural frequencies are discussed comprehensively. The results show that with increasing angular velocity, non-dimensional frequency is increased and it depends on size effect parameter. Also, in the zero angular velocity, it can be seen with increasing AFG index, the frequencies are reducing, but in non-zero angular velocity, AFG index shows complex behavior on frequency. پرونده مقاله
      • دسترسی آزاد مقاله

        2 - On the Analysis of FGM Beams: FEM with Innovative Element
        M Zakeri A Modarakar Haghighi R Attarnejad
        This paper aims at presenting a new efficient element for free vibration and instability analysis of Axially Functionally Graded Materials (FGMs) non-prismatic beams using Finite Element Method (FEM). Using concept of Basic Displacement Functions (BDFs), two- node eleme چکیده کامل
        This paper aims at presenting a new efficient element for free vibration and instability analysis of Axially Functionally Graded Materials (FGMs) non-prismatic beams using Finite Element Method (FEM). Using concept of Basic Displacement Functions (BDFs), two- node element extends to three-node element for obtaining much more exact results using FEM. First, BDFs are introduced and computed using energy method such as unit-dummy load method. Afterward, new efficient shape functions are developed in terms of BDFs during the procedure based on the mechanical behavior of the element in which presented shape functions benefit generality and accuracy from stiffness and force method, respectively. Finally, deriving structural matrices of the beam with respect to new shape functions; free vibration and instability analysis of the FGM beam are studied using finite element method for all types of AFGM beams and the convergence of FEM has been studied. The results from both free vibration and instability analysis are in perfect agreement with those of previously published. پرونده مقاله
      • دسترسی آزاد مقاله

        3 - Two-Dimensional Elasticity Solution for Arbitrarily Supported Axially Functionally Graded Beams
        A Singh P Kumari
        First time, an analytical two-dimensional (2D) elasticity solution for arbitrarily supported axially functionally graded (FG) beam is developed. Linear gradation of the material property along the axis of the beam is considered. Using the strain displacement and constit چکیده کامل
        First time, an analytical two-dimensional (2D) elasticity solution for arbitrarily supported axially functionally graded (FG) beam is developed. Linear gradation of the material property along the axis of the beam is considered. Using the strain displacement and constitutive relations, governing partial differential equations (PDEs) is obtained by employing Ressiner mixed variational principle. Then PDEs are reduced to two set of ordinary differential equations (ODEs) by using recently developed extended Kantorovich method. The set of 4n ODEs along the z-direction has constant coefficients. But, the set of 4n nonhomogeneous ODEs along x-direction has variable coefficients which is solved using modified power series method. Efficacy and accuracy of the present methodology are verified thoroughly with existing literature and 2D finite element solution. Effect of axial gradation, boundary conditions and configuration lay-ups are investigated. It is found that axial gradation influence vary with boundary conditions. These benchmark results can be used for assessing 1D beam theories and further present formulation can be extended to develop solutions for 2D micro or Nanobeams. پرونده مقاله