بررسی فراوانی ایزوله های مقاوم به متی سیلین استافیلوکوکوساورئوس و وجود جدایه های مقاوم به ونکومایسین در نمونه های بالینی
ساناز رحیمی
1
(
گروه زیست شناسی، دانشگاه آزاد اسلامی، واحد تهران مرکز، ایران
)
کتایون برهانی
2
(
گروه زیست شناسی، دانشکده علوم پایه، دانشگاه آزاد اسلامی، واحد تهران مرکزی، ایران
)
کلید واژه: استافیلوکوکوس اورئوس مقاوم به متی سیلین , مقاومت به ونکومایسین , عفونت بیمارستانی,
چکیده مقاله :
مقدمه: استافيلوكوكوس اورئوس یکی از شايع ترين و مهمترين عوامل بیماریزای بيمارستاني است و به علت افزايش مقاومت آنها در برابر آنتی بیوتیک ها، به عنوان يكي از مهمترين مشكلات بهداشتي در سراسر جهان تبديل شده اند.
هدف: هدف از این مطالعه بررسی فراوانی این باکتری در بخش های مختلف بیمارستانی و فراوانی جدایه های مقاوم به متی سیلین استافیلوکوکوس اورئوس (MRSA) و احتمال جداسازی ایزوله های مقاوم به ونکومایسین در نمونه های بالینی می باشد.
مواد و روشها: ۱۳۸ نمونه بالینی از بخشهای مختلف شش بیمارستان در تهران جدا شده و با انجام تست های بیوشیمیایی به عنوان استافیلوکوکوس اورئوس شناسایی شدند. تست حساسیت آنتی بیوتیکی با استفاده از روش انتشار دیسک با استفاده از سیزده آنتی بیوتیک انجام شد. فراوانی ژن هایmecA و vanA در ایزوله های مقاوم با روش PCR تعیین گردید.
نتایج: بیشتر نمونه های بالینی از بخش ICU جدا شدند و بویژه مربوط به عفونت های ادراری در زنان و سپس شستشوی برونش در مردان بودند. بیشتر جدایه ها مربوط به گروه سنی ۳۰ تا ۵۰ سال بودند. بالاترین و کمترین میزان مقاومت به ترتیب در برابر آنتی بیوتیک های پنی سیلین (۱٪/۹۹) و سینرسید(۰٪) گزارش شد. اگرچه ۸۷ جدایه (٪۶۲/۹) حاوی ژن mecA بوده و به عنوان باکتری های MRSAشناخته شدند، اما هیچ یک از آنها حاوی ژن vanA نبودند.
نتيجه گيري: ایجاد مقاومت آنتی بیوتیکی در عفونت های بيمارستاني يكي از مهمترين چالش ها در درمان است، پایش دقیق و مداوم ژن های مقاومت بسیار حائز اهمیت است.
چکیده انگلیسی :
Introduction: Staphylococcus aureus is one of the most common and significant nosocomial pathogens. Due to the increasing resistance of these bacteria to antibiotics, they have become one of the most important health problems worldwide.
Aim: The aim of this study is to investigate the prevalence of this bacterium in various hospital wards and the frequency of methicillin-resistant Staphylococcus aureus (MRSA) isolates, as well as the potential isolation of vancomycin-resistant isolates in clinical samples.
Materials and Methods: 138 clinical samples were collected from various wards of six hospitals in Tehran and were identified as Staphylococcus aureus through biochemical tests. Antibiotic susceptibility testing was performed using the disk diffusion method with thirteen antibiotics. The prevalence of the mecA and vanA genes in resistant isolates was determined using PCR.
Results: Most clinical samples were collected from the ICU, particularly related to urinary tract infections in women and bronchial washings in men. The majority of isolates were from the 30 to 50-year-old age group. The highest and lowest resistance rates were reported against penicillin (99%) and Synercid (0%), respectively. Although 87 isolates (62.9%) contained the mecA gene and were identified as MRSA, none of them contained the vanA gene.
Conclusion: The development of antibiotic resistance in hospital-acquired infections is one of the most significant challenges in treatment. Precise and continuous monitoring of resistance genes is of great importance.
1. Panda S, Kar S, Sharma S, Singh D V. Multidrug-resistant Staphylococcus haemolyticus isolates from infected eyes and
healthy conjunctivae in India. Journal of Global Antimicrobial Resistance. 2016;6:154–9. DOI: 10.1016/j.jgar.2016.05.006 2. Farazandeh, Nourbakhsh, Jahromi H. The effect of silver nanoparticles on surface hydrophobicity and biofilm formation in Staphylococcus aureus, Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli. Iranian Journal of
Biosciences. 2021;16(1):17–31. 3. Parvizrad R, Khalili Dermani S, Ahmadi A. Frequency of Vectors of Methicillin-resistant Staphylococcus Aureus Among Emergency Staff of Vali-e-Asr Hospital in Arak City, 2018. Journal of Arak University of Medical Sciences. 2020;23(3):292–9. DOI:
10.32598/jams.23.3.5943.1 4. Klevens RM, Morrison MA, Nadle J, Petit S, Gershman K, Ray S, et al. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. The Journal of the American Medical Association 2007;298(15):1763–71. DOI:
10.1001/jama.298.15.1763. 5. Reddy PN, Srirama K, Dirisala VR. An update on clinical burden, diagnostic tools, and therapeutic options of
Staphylococcus aureus. Infectious Diseases: Research and Treatment. 2017;10:1179916117703999. DOI: 10.1177/1179916117703999 6. Mahdavi, Khodaei, Jahromi H. Investigation of the effect of Shirazi thyme essential oil against biofilm formation of
clinical strains of Staphylococcus aureus. Iranian Journal of Biosciences. 2018;13(1):1–8. 7. Rezazadeh M, Yousefi Mashouf R, Sarmadyan H, Ghaznavi-Rad E. Antibiotic profile of methicillin-resistant Staphylococcus aureus with multiple-drug resistances isolated from nosocomial infections in Vali-Asr Hospital of Arak.
Journal of Arak University of Medical Sciences. 2013;16(2):29–37. 8. Katayama Y, Zhang H-Z, Hong D, Chambers HF. Jumping the barrier to β-lactam resistance in Staphylococcus aureus.
Journal of Bacteriology. 2003;185(18):5465–72. DOI: 10.1128/JB.185.18.5465-5472.2003 9. Suhaili Z, Johari SA, Mohtar M, Abdullah ART, Ahmad A, Ali AM. Detection of Malaysian methicillin-resistant Staphylococcus aureus (MRSA) clinical isolates using simplex and duplex real-time PCR. World Journal of Microbiology and
Biotechnology. 2009;25:253–8. https://doi.org/10.1007/s11274-008-9887-z 10. Stojanov M, Blanc DS. Characterization of the staphylococcal cassette chromosome mec insertion site in 108 isolates lacking the mecA gene and identified as methicillin-resistant Staphylococcus aureus by the Xpert MRSA assay. European
Journal of Clinical Microbiology and Infectious Diseases. 2014;33:1967–71. DOI: 10.1007/s10096-014-2169-9. 11. Dibah S, Arzanlou M, Jannati E, Shapouri R. Prevalence and antimicrobial resistance pattern of methicillin resistant Staphylococcus aureus (MRSA) strains isolated from clinical specimens in Ardabil, Iran. Iranian Journal of Microbiology.
2014;6(3):163. 12. Köck R, Becker K, Cookson B, van Gemert-Pijnen JE, Harbarth S, Kluytmans J, et al. Methicillin-resistant Staphylococcus aureus (MRSA): burden of disease and control challenges in Europe. Eurosurveillance. 2010;15(41). DOI:
10.2807/ese.15.41.19688-en 13. Deresinski S. Methicillin-resistant Staphylococcus aureus: an evolutionary, epidemiologic, and therapeutic odyssey.
Clinical Infectious Diseases 2005;40(4):562–73. DOI: 10.1086/427701 14. Chang S, Sievert DM, Hageman JC, Boulton ML, Tenover FC, Downes FP, et al. Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene. The New England Journal of Medicine. 2003;348(14):1342–7. DOI:
10.1056/NEJMoa025025 15. Gardete S, Tomasz A. Mechanisms of vancomycin resistance in Staphylococcus aureus. Journal of Clinical Investigation.
2014;124(7):2836–40. DOI: 10.1172/JCI68834 16. Gul N, Mujahid TY, Ahmad S. Isolation, identification and antibiotic resistance profile of indigenous bacterial isolates from urinary tract infection patients. Pakistan Journal of Biological Sciences. 2004;7(12):2051–4. DOI:
10.3923/pjbs.2004.2051.2054 17. Middelkoop SJM, Van Pelt LJ, Kampinga GA, Ter Maaten JC, Stegeman CA. Influence of gender on the performance of urine dipstick and automated urinalysis in the diagnosis of urinary tract infections at the emergency department. European
Journal of Internal Medicine. 2021;87:44–50. DOI: 10.1016/j.ejim.2021.03.010 18. Arcavi L, Benowitz NL. Cigarette smoking and infection. Archives of Internal Medicine. 2004;164(20):2206–16. DOI:
10.1001/archinte.164.20.2206 19. Ozdemir K, Dizbay M. Nosocomial infection and risk factors in elderly patients in intensive care units. Journal of
Microbiology and Infectious Diseases. 2015;5(01):38–43. DOI: 10.5799/ahinjs.02.2015.01.0174 20. Hashimoto K, Gotoh K, Masunaga K, Iwahashi J, Sakamoto T, Miura M, et al. Reducing the urine collection rate could prevent hospital-acquired horizontal transmission of multidrug-resistant Pseudomonas aeruginosa. Journal of Infection and
Chemotherapy. 2022;28(6):786–90. DOI: 10.1016/j.jiac.2022.02.022 21. Soriano MC, Vaquero C, Ortiz-Fernández A, Caballero A, Blandino-Ortiz A, de Pablo R. Low incidence of co-infection, but high incidence of ICU-acquired infections in critically ill patients with COVID-19. Journal of Infection. 2021;82(2):e20. DOI:
10.1016/j.jinf.2020.09.010 22. Gould SWJ, Cuschieri P, Rollason J, Hilton AC, Easmon S, Fielder MD. The need for continued monitoring of antibiotic resistance patterns in clinical isolates of Staphylococcus aureus from London and Malta. Annals of Clinical Microbiology and
Antimicrobials. 2010;9:1–7. DOI: 10.1186/1476-0711-9-20 23. Breves A, Miranda CAC, Flores C, Filippis I de, Clementino MM. Methicillin-and vancomycin-resistant Staphylococcus aureus in health care workers and medical devices. Brazilian Journal of Pathology and Laboratory Medicine. 2015;51(3):143–
52. DOI:10.5935/1676-2444.20150025 24. Elhassan MM, Ozbak HA, Hemeg HA, Elmekki MA, Ahmed LM. Absence of the mecA gene in methicillin resistant Staphylococcus aureus isolated from different clinical specimens in Shendi City, Sudan. BioMed Research International.
2015;2015(1):895860. DOI: 10.1155/2015/895860 25. Nasution GS, Suryanto D, Kusumawati RL. Detection of mecA gene from methicillin resistant Staphylococcus aureus isolates of North Sumatera. In: IOP Conference Series: Earth and Environmental Science. IOP Publishing; 2018. p. 12026. DOI
10.1088/1755-1315/130/1/012026 26. Askari, Parvin, Ghazvini, Kiarash, Namayi, Arian, et al. Investigation of the prevalence of methicillin-resistant Staphylococcus aureus (MRSA) and determination of their antibiotic resistance patterns in patients hospitalized at Imam
Reza Hospital, Birjand. Scientific Journal of Birjand University of Medical Sciences. 2017;24(3):218–26. 27. Hadi Pour, Maryam; Izadi Amoli, Rabieh. Determination of the prevalence of vancomycin resistance genes (vanA and vanB) among methicillin-resistant Staphylococcus aureus (MRSA) strains isolated from the staff of Imam Ali Hospital, Amol.
2015. Available from: https://sid.ir/paper/824141/fa. 28. Hiramatsu K. Vancomycin-resistant Staphylococcus aureus: a new model of antibiotic resistance. Lancet Infectious
Diseases. 2001;1(3):147–55. DOI: 10.1016/S1473-3099(01)00091-3 29. Jeon B-C, Jeong SH, Bae IK, Kwon SB, Lee K, Young D, et al. Investigation of a nosocomial outbreak of imipenem-resistant Acinetobacter baumannii producing the OXA-23 β-lactamase in Korea. Journal of Clinical Microbiology. 2005;43(5):2241–5.
DOI: 10.1128/JCM.43.5.2241-2245.2005 30. Al-Ruaily MA, Khalil OM. Detection of (mecA) gene in methicillin resistant Staphylococcus aureus (MRSA) at Prince
a/Rhman Sidery hospital, al-Jouf, Saudi Arabia. Journal of Medical Genetics and Genomics. 2011;3(3):41–5. 31. Park JW, Lee H, Kim JW, Kim B. Characterization of infections with vancomycin-intermediate Staphylococcus aureus (VISA) and Staphylococcus aureus with reduced vancomycin susceptibility in South Korea. Scientific Reports. 2019;9(1):6236.
DOI:10.1038/s41598-019-42307-6 32. Wang G, Hindler JF, Ward KW, Bruckner DA. Increased vancomycin MICs for Staphylococcus aureus clinical isolates from
a university hospital during a 5-year period. Journal of Clinical Microbiology 2006;44(11):3883–6. DOI: 10.1128/JCM.01388-06 33. Khazaei S, Pourtahmaseby P, Kanani M, Madani SH, Malekianzadeh E. Resistance of Staphylococcus aureus to vancomycin: A six-year study (2006-2011). Medical Journal of Tabriz University of Medical Sciences and Health Services 2014;
35(5): 45-50. 34. Jahanshahi A, Zeighami H, Haghi F. Molecular characterization of methicillin and vancomycin resistant Staphylococcus
aureus strains isolated from hospitalized patients. Microbial Drug Resistance. 2018;24(10):1529–36. DOI: 10.1089/mdr.2018.0069.