اثر روند کاربری اراضی بر میزان مصرف آب کشاورزی در حوضه دریاچه ارومیه در 20 سال آتی با استفاده از زنجیره مارکوف
محورهای موضوعی : مدیریت منابع آبکیومرث روشنگر 1 * , محمدتقی اعلمی 2 , حسن گلمحمدی 3
1 - استاد گروه مهندسی عمران آب، دانشکده مهندسی عمران، دانشگاه تبریز، تبریز.
2 - استاد گروه مهندسی عمران آب، دانشکده مهندسی عمران، دانشگاه تبریز، تبریز.
3 - دانشجوی دکتری مهندسی آب و سازههای هیدرولوژیکی، دانشگاه تبریز، تبریز.
کلید واژه: سلولهای خودکار, زنجیره مارکوف, مصرف آب, تغییرات کاربری اراضی, حوضه دریاچه ارومیه,
چکیده مقاله :
زمینه و هدف: کاهش سطح تراز آبی دریاچه ارومیه و اثرات آن بر محیط پیرامون این دریاچه از موضوعات و چالشهای مهم ملی و بینالمللی در دو دهه اخیر بوده است. براساس مطالعات صورت گرفته یکی از مهمترین عامل اثرگذار بر این روند کاهشی، افزایش برداشت به-ویژه جهت امور کشاورزی بوده است. برهمین اساس هدف پژوهش حاضر شبیهسازی وضعیت آینده منابع آب حوضه دریاچه ارومیه، تحت تأثیر مساحت کاربریهای کشاورزی جهت برنامهریزی بهتر آینده منابع آب این حوضه میباشد.روش پژوهش: به این منظور، نخست دادههای تصاویر ماهوارهای لندست در بازه زمانی سال 2000 الی 2020 به کمک الگورتیم SVM در نرمافزار ENVI5.3 طبقهبندی و صحت طبقهبندی با استفاده از الگوریتم Kappa Coefficient سنجیده شد. در ادامه آمارها و اطلاعات مربوط به تغییر الگوی کشت (از زراعی به باغی) و منابع آب ورودی به دریاچه ارومیه محاسبه گردید. درگام بعد با استفاده از دو روش LCM, CA-MARKOV شبیهسازی تغییرات کاربری اراضی برای سال 2030 و 2040 انجام شد و در نهایت پس از مشخص نمودن میزان تغییرات هریک از کاربریها، میزان آب مورد نیاز جهت امور کشاورزی در حوضه آبریز با استفاده از مدل NETWAT شبیهسازی شد.یافته ها: نتایج حاصل از بررسیها نشان داد که مساحت دو کاربری کشاورزی آبی و باغ به ترتیب از 1450 و 395 کیلومترمربع در سال 2000 به بیش از 3600 و 1650 کیلومترمربع در سال 2040 افزایش خواهد یافت. همین امر باعث افزایش میزان آب مورد نیاز جهت امور کشاورزی از 1500 میلیون مترمکعب در سال 2000 به بیش از 4100 میلیون مترمکعب در سال 2040 خواهد شد.نتایج: به کاربری کشاورزی آبی از سال 2000 تا 2020 به میزان Km2 1253.05 افزوده شده که طبق پیشبینی به روش مارکوف این میزان در سال 2040 به Km2 2049.54 میرسد، که میزان مصرف آب را 1 میلیارد و 473 میلیون مترمکعب افزایش میدهد. به کاربری باغات از سال 2000 تا 2020 به میزان Km2 688.02 افزوده شده که طبق پیشبینی به روش مارکوف این میزان در سال 2040 به Km2 1276.14 میرسد، که میزان مصرف آب را 703 میلیون مترمکعب افزایش می دهد. به کاربری دیم از سال 2000 تا 2020 به میزان Km2 367.06 افزوده شده که طبق پیشبینی بروش مارکوف این میزان در سال 2040 به Km2 531 میرسد، که میزان مصرف آب را MCM 253 افزایش میدهد.
Background and Aim: Reducing the water level of Urmia Lake and its effects on the environment around the lake has been one of the important national and international issues and challenges in the last two decades. In accord with the studies, one of the critical factors affecting this declining trend has been the rise in harvest, especially for agriculture. Accordingly, the purpose of this study is to simulate the future status of water resources in the Urmia Lake basin, influenced by the area of agricultural land uses.Method: For this purpose, Landsat satellite image data for the period 2000 to 2020 are firstly classified using the SVM algorithm in ENVI5.3 software and the classification accuracy is analyzed using the Kappa Coefficient algorithm.In the following, the statistics and information related to the change of cultivation pattern (from arable to garden) and water sources discharging Lake Urmia are calculated. In the next step, the simulation of land use changes for 2030 and 2040 is done using two LCM and CA-MARKOV methods. And finally, after determining the amount of changes in each land use, the amount of water required for agricultural affairs in the catchment is simulated using NETWAT model.Conclusion: The results show that the area of two uses, irrigated agriculture and garden will increase from 1450 and 395 square kilometers in 2000 to more than 3600 and 1650 square kilometers in 2040, respectively, This will increase the amount of water Needed or agriculture from 1,500 million cubic meters in 2000 to more than 4,100 million cubic meters in 2040.Results: From 2000 to 2020, water consumption in irrigated agriculture has increased by 1253.05 Km2; which according to Markov's prediction method, this amount will reach 2049.54 Km2 in 2040 that raises the amount of water consumption by 1 billion and 473 million cubic meters. The gardens land use has increased by 688.02 Km2 from 2000 to 2020, and according to Markov's prediction method, this amount will reach 1276.14 Km2 in 2040, which raises the amount of water consumption by 703 million cubic meters. From 2000 to 2020, 367.06 Km2 has been added to the drayland farming, which according to the prediction of Markov method, this amount will reach 531 Km2 in 2040, which soars the amount of water consumption by 253 MCM.
Alizadeh, A. (2001). Net irrigation needs of Iranian crops and horticulture (NETWAT). Iran Agricultural Water Consumption Optimization Project. [in Persian]
Arkhi, P. (2014).Predicting the trend of land use change using LCM model in GIS environment (Case study: Sarableh region). Iranian Journal of Forests and Rangelands Protection, 1, 1-19.
Birhanu, A., Masih, I., van der Zaag, P., Nyssen, J., & Cai, X. (2019). Impacts of land use and land cover changes on hydrology of the Gumara catchment. Ethiopia, 4th International Conference on Ecohydrology, Soil and Climate Change, 109, 1-78.
Calanca, P. (2008). Climate change and drought occurrence in the Alpine region. Global and Planetary Changes 57, 151-160.
Chen, Z., Huang, M., Zhu, D., Altan, O. (2021). Integrating Remote Sensing and a Markov-FLUS Model to Simulate Future Land Use Changes in Hokkaido. Japan. Remote Sens, 13, 2621.
Esmaeilnezhad, R., Zeinalzadeh, K. (2020). Evaluation of Land Use Changes using Remote Sensing and GIS in Nazlou Chai sub basin. Journal of Soil Management and Sustainable Production, 9(4), 159-172. [in Persian]
Falahatkar S., Hosseini S.M., Salman Mahiny A.R., Ayoubi S. (2016). Predicting land use change using LCM model. Environmental Research, 13 ,163-174. [in Persian]
Ghodousi, M., Delavar, M., Morid, S. (2014). Impact of Land Use Changes on Hydrology of Ajichai Basin and its Input to Urmia Lak. Iranian Journal of Soil and Water Research, 45(2), 123-133. [in Persian]
Heshmati, M., Gheitouri, M. (2018). Land-use Change; Achilles heel to Overcoming the Environmental Crisis, Process and Impacts. Geography and Environmental Sustainability, 8(1), 89-105. [in Persian]
Joorabian shooshtari, S., Esmaili-Sari, A., Hosseini, S., Gholamalifard, M. (2014). Application logistic regression and Markov Chain in land cover change prediction in east of Mazandaran province. Journal of Natural Environment, 66(4), 351-363. [in Persian]
Kangabam, R.D., Selvaraj, M., Govindaraju, M. (2019). Assessment ofland use land cover changes in Loktak Lake in Indo-Burma Biodiversity Hotspot using geospatial techniques. The Egyptian Journal of Remote Sensing and Space Science, 22 (2), 137-143.
Li, Z., Liu, W. Z., Zhang, X. C., Zheng, F. (2009). Impacts of land use change and climate variability on hydrology in an agriculture catchment on the Loess Plateau of China. Journal of Hydrology, 377 (1), 35-42.
Mas, J.F.K., Paegelow, M., Camacho Olmedo, M. T. (2014). Inductive pattern-based land use/cover change models: A comparison of four software packages. Environmental Modelling & software, 51, 94-111.
Mirakhorlo, M., Rahimzadegan, M. (2018). Integration of SimWeight and Markov Chain to Predict Land Use of Lavasanat Basin. Numerical Methods in Civil Engineering, 2(4), 146-158. [in Persian]
Mosavi, S., Kaboli, H. (2021). Optimal operation of reservoirs with increasing water use efficiency: Climate change adaptation approach (case study: Jareh Dam). Amirkabir Journal of Civil Engineering, 52(12), 3043-3058. [in Persian]
Nikoo, SH., Akbarzadeh, P. (2022). Investigating the regional development in the form of land-use changes effects on the groundwater aquifer level (Case study: Damghan watershed). Journal of Geography and Environmental Sustainability, 12(2):41-56. [in Persian]
Rajabi, M., Saravani, S. (2015). The Necessity of Reviving Lake Urmia Causes of Drought and Threats. Central Secretariat of Lake Urmia Rehabilitation Headquarters, 1-50
Srivastava, P.K. (2012). Selection of classification techniques for land use/land cover change investigation, Advances in Space Research, 50(9), 1250-1265
Vinayak, B., Lee, H.S., Gedem, S. (2021). Prediction of Land Use and Land Cover Changes in Mumbai City, India, Using Remote Sensing Data and a Multilayer Perceptron Neural Network-Based Markov Chain Model. Sustainability , 13, 471.
Wang, S.W., Gebru, B. M., Lamchin, M., Kayastha, R. B., Lee, W. K. (2020). Land use and land cover change detection and prediction in the Kathmandu district of Nepal using remote sensing and GIS. Sustainability, 12(9) 3925.
Yamani, M., Mehrjonezhad, A. (2012). The Effects of Land Use Change upon Hydrological Balance Components in Kordan Basin Using HEC- HMS Model. Journal of Geography and Environmental Sustainability, 2(3):1-16