بررسی کاربرد شاخص جدید خشکسالی کشاورزی بر مبنای رطوبت خاک و شاخص پوشش گیاهی اصلاح شده به کمک داده های سنجش از دور ماهواره های SMAP و TERRA
محورهای موضوعی : خشکسالی در هواشناسی و کشاورزیعلی اکبر کرموند 1 , سید عباس حسینی 2 * , احمد شرافتی 3
1 - دانشجو دکتری، گروه مدیریت ساخت و آب، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.
2 - استادیار، گروه مدیریت ساخت و آب، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.
3 - استادیار، گروه مدیریت ساخت و آب، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.
کلید واژه: خشکسالی, رطوبت خاک, سنجش از دور, شاخص پوشش گیاهی, شاخص خشکسالی کشاورزی,
چکیده مقاله :
زمینه و هدف: در روش های اندازه گیری عوامل اثرگذار بر پدیده خشکسالی به صورت میدانی همواره چالش تفکیک مکانی و پیوستگی زمانی و همچنین نیاز به حضور نیروی انسانی کنترل کننده مطرح است. اما به علت توانایی سنجش از دور در اندازه گیری داده های خشکسالی در وسعت تمام سطح کره زمین و با قدرت تفکیک مکانی و زمانی قابل قبول، امروزه استفاده از سنجش از دور در کنترل و رصد خشکسالی بیش از پیش گسترش یافته است و به ابزاری قدرتمند در دست کارشناسان تبدیل شده است. در این پژوهش با استفاده از داده های سنجش از دور بر مبنای دو مؤلفه رطوبت خاک سطحی و شاخص پوشش گیاهی اصلاح شده (EVI)، شاخص خشکسالی کشاورزی جدیدی به نام (SMADIN) پیشنهاد شده است.روش پژوهش: در راستای هدف تولید شاخص خشکسالی بر مبنای رطوبت خاک، از داده های رطوبت خاکِ مربوط به اندازه گیری های تا عمق 5 سانتیمتری به روش سنجش از دور ماهواره SMAP ، موسوم به داده های رطوبت خاک سطحی استفاده شد. این داده ها پیش از استفاده، با داده های روزانه رطوبت خاک میدانی تهیه شده توسط سازمان هواشناسی کشور در بازه 250 روزه اعتبار سنجی شده است. خطای مرحله اعتبار سنجی به روش خطای جذرِ میانگینِ مربعات بین داده های ماهواره ای اندازه گیری های روزانه انجام شد. بعلاوه شاخص EVI از روش محاسبه برخط داده های اندازه گیری ماهواره TERRA و سنجنده MODIS بدست آمده است. در نهایت به روش تحلیلی، رابطه شاخص خشکسالی بر اساس رطوبت خاک سطحی پیشنهاد شده است. جهت مقایسه عملکرد این شاخص در شرایط آب و هوایی مختلف دو منطقه نمونه که یکی نماینده آب و هوای خشک و دیگری نماینده آب و هوای مرطوب بودند انتخاب شد. ماتریسِ همبستگی به روش پیرسون برای شاخص خشکسالی کشاورزی SMADIN در مقابل شاخص سلامت پوشش گیاهی VHI رسم گردید و در خصوص نتایج بحث و بررسی انجام شد.یافته ها: نتایج اعتبارسنجی نشان داد که رطوبت خاک اندازه گیری شده به روش میدانی در مناطق با کاربری اراضی مشابه در مقابل اندازه گیری سنجش از دور، دارای میانگین خطا جذر میانگین مربعات m^3/m^3 05/0 بوده است. نتایج تحقیق نیز نشان می دهد شاخص خشکسالی کشاورزی جدید در مقابل شاخص VHI، در منطقه با آب و هوای مرطوب تا میزان 96% و در منطقه خشک 98% همبستگی دارد. بعلاوه مقایسه 5 ساله سری زمانی SMADIN و VHI در منطقه مورد در اوج ها و کمینه ها و فراز و فرودها همزمانی دیده می شود.نتایج: در این پژوهش یک شاخص خشکسالی کشاورزی بر مبنای رطوبت خاک پیشنهاد شد. به اعتقاد نویسندگان این پژوهش در سال های اخیر که عمر ارائه داده های ماهواره SMAP بیشتر از 7 سال شده است، امکان استفاده از این شاخص در مطالعات آتی وجود دارد. با در نظر گرفتن خطای احتمالی داده های SMAP و TERRA در تامین ورودی های شاخص خشکسالی، پیشنهاد می شود این شاخص در مطالعات آتی در مناطق خشک مانند مناطق مرکزی و جنوبی کشور بیشتر استفاده گردد.
Background and Aim: There are always challenges of spatial and temporal resolution in-situ measurement methods of factors affecting drought phenomena, and the presence of human operators is required. However, due to remote sensing's ability to measure data on the entire surface of the planet with an acceptable spatial and temporal resolution, its use in controlling and observing drought has grown more than ever, and it has become a powerful tool in the hands of experts. In this study, based on two components of surface soil moisture and modified vegetation index (EVI) by applying remote sensing data, a new agricultural drought index named (SMADIN) is proposed.Method: To achieve the goal of proposing a drought index based on soil moisture, surface soil moisture data from the SMAP satellite of 5 cm depth was used. These data were validated before use against daily field measurements provided by the Iranian Meteorological Organization over a 250-day period. Validation step error was evaluated using the root mean square error method between satellite data and field measurements. Furthermore, the EVI index was calculated using data from the TERRA satellite and the MODIS sensor. Eventually, an analytical method is used to propose a drought index based on soil moisture. In order to compare the performance of this index in different weather conditions, two regions were chosen, one representing a dry climate and the other a wet climate. Then, the correlation matrix was plotted by the Pearson method for SMADIN agricultural drought index versus vegetation health index (VHI) and the results were discussed.Results: Validation showed that field data measured in land use similar to remote sensing had an average root mean square error of 0.05 .The results indicate that the new agricultural drought index correlates up to 96% with VHI in the humid climate and 98% in arid regions. In addition, a 5-year comparison of the new SMADI and VHI time series in the study area demonstrates synchrony in peaks, minimums, increases, and decreases.Conclusion: An agricultural drought index based on soil moisture is proposed in this study. We believe that, in recent years, when the lifetime of the SMAP satellite data exceeds 7 years, it is possible to use this index in future studies. Considering the possible error of SMAP and TERRA data in providing drought index, it is suggested to use this index in future studies in dry regions such as the central and southern regions of Iran.
Abbasi, F., Bazgeer, S., Kalehbasti, P. R., Oskoue, E. A., Haghighat, M., & Kalehbasti, P. R. (2022). New climatic zones in Iran: a comparative study of different empirical methods and clustering technique. Theoretical and Applied Climatology, 147(1–2), 47–61. https://doi.org/10.1007/s00704-021-03785-9
Ajaz, A., Taghvaeian, S., Khand, K., Gowda, P. H., & Moorhead, J. E. (2019). Development and Evaluation of an Agricultural Drought Index by Harnessing Soil Moisture and Weather Data. Water, 11(7), 1375. https://doi.org/10.3390/w11071375
ASTM D2216-19. (2019). Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. ASTM, 1–7. https://www.astm.org/Standards/D2216
Babaeian, E., Sadeghi, M., Jones, S. B., Montzka, C., Vereecken, H., & Tuller, M. (2019). Ground, Proximal, and Satellite Remote Sensing of Soil Moisture. In Reviews of Geophysics (Vol. 57, Issue 2, pp. 530–616). Blackwell Publishing Ltd. https://doi.org/10.1029/2018RG000618
Brito, S. S. B., Cunha, A. P. M. A., Cunningham, C. C., Alvalá, R. C., Marengo, J. A., & Carvalho, M. A. (2018). Frequency, duration and severity of drought in the Semiarid Northeast Brazil region. International Journal of Climatology, 38(2), 517–529. https://doi.org/10.1002/joc.5225
Campos-Taberner, M., Moreno-Martínez, Á., García-Haro, F., Camps-Valls, G., Robinson, N., Kattge, J., & Running, S. (2018). Global Estimation of Biophysical Variables from Google Earth Engine Platform. Remote Sensing, 10(8), 1167. https://doi.org/10.3390/rs10081167
Chan, S., Bindlish, R., Hunt, R., Jackson, T., & Kimball, J. (2013). Soil Moisture Active Passive (SMAP) Ancillary Data Report: Vegetation Water Content. In SMAP Science Document (Issue 047). http://smap.jpl.nasa.gov/science/dataproducts/ATBD/.
Entekhabi, D., Njoku, E. G., O’Neill, P. E., Kellogg, K. H., Crow, W. T., Edelstein, W. N., Entin, J. K., Goodman, S. D., Jackson, T. J., Johnson, J., Kimball, J., Piepmeier, J. R., Koster, R. D., Martin, N., McDonald, K. C., Moghaddam, M., Moran, S., Reichle, R., Shi, J. C., … Van Zyl, J. (2010). The soil moisture active passive (SMAP) mission. Proceedings of the IEEE, 98(5), 704–716. https://doi.org/10.1109/JPROC.2010.2043918
Entekhabi, D., Yueh, Si., O’Neil, P. E., Kellogg, K. H., Allen, A., Bindlish, R., & Administration, N. A. and S. (2014). SMAP Handbook Soil Moisture Active Passive. In Jet Propulsion Laboratory, California Institute of Technology.
Friendly, M. (2002). Corrgrams: Exploratory displays for correlatigon matrices. American Statistician, 56(4), 316–324. https://doi.org/10.1198/000313002533
Funk, C., & Shraddhanand Shukla. (2020). Drought Early Warning and Forecasting. In Drought Early Warning and Forecasting. https://doi.org/10.1016/c2016-0-04328-0
Gessesse, A. A., & Melesse, A. M. (2019). Temporal relationships between time series CHIRPS-rainfall estimation and eMODIS-NDVI satellite images in Amhara Region, Ethiopia. Extreme Hydrology and Climate Variability: Monitoring, Modelling, Adaptation and Mitigation, 81–92. https://doi.org/10.1016/B978-0-12-815998-9.00008-7
González-Zamora, Á., Sánchez, N., Martínez-Fernández, J., & Wagner, W. (2016). Root-zone plant available water estimation using the SMOS-derived soil water index. Advances in Water Resources, 96, 339–353. https://doi.org/10.1016/j.advwatres.2016.08.001
Google Earth Engine. (2021). FAQ – Google Earth Engine. Google. https://earthengine.google.com/faq/
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031
Grillakis, M. G., Koutroulis, A. G., Alexakis, D. D., Polykretis, C., & Daliakopoulos, I. N. (2021). Regionalizing Root-Zone Soil Moisture Estimates From ESA CCI Soil Water Index Using Machine Learning and Information on Soil, Vegetation, and Climate. Water Resources Research, 57(5), e2020WR029249. https://doi.org/10.1029/2020WR029249
Hao, Z., Hao, F., Singh, V. P., Xia, Y., Ouyang, W., & Shen, X. (2016). A theoretical drought classification method for the multivariate drought index based on distribution properties of standardized drought indices. Advances in Water Resources, 92, 240–247. https://doi.org/10.1016/j.advwatres.2016.04.010
Hisdal, H. (2000). Technical Report No . 6 Drought Event Definition. Assessment of the Regional Impact of Droughts in Europe, 1(6), 41.
Huete, A. (1997). A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sensing of Environment, 59(3), 440–451. https://doi.org/10.1016/S0034-4257(96)00112-5
Huete, A., Didan, K., Miura, T., Rodriguez, E. ., Gao, X., & Ferreira, L. . (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1–2), 195–213. https://doi.org/10.1016/S0034-4257(02)00096-2
Jamei, M., Baygi, M. M., Oskouei, E. A., & Lopez-Baeza, E. (2020). Validation of the SMOS level 1C brightness temperature and level 2 soil moisture data over the west and southwest of Iran. Remote Sensing, 12(17), 1–20. https://doi.org/10.3390/rs12172819
Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of Fluids Engineering, Transactions of the ASME, 82(1), 35–45. https://doi.org/10.1115/1.3662552
McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. Proceedings of the 8th Conference on Applied Climatology, 17(22), 179–183.
Michelle Drabik. (2019, March 30). Proximate Cause of the SMAP Radar Failure. JPL of NASA. https://llis.nasa.gov/lesson/27701
Mishra, A., Vu, T., Veettil, A. V., & Entekhabi, D. (2017). Drought monitoring with soil moisture active passive (SMAP) measurements. Journal of Hydrology, 552, 620–632. https://doi.org/10.1016/j.jhydrol.2017.07.033
Mladenova, I. E., Bolten, J. D., Crow, W., Sazib, N., & Reynolds, C. (2020). Agricultural Drought Monitoring via the Assimilation of SMAP Soil Moisture Retrievals Into a Global Soil Water Balance Model. Frontiers in Big Data, 3(April), 1–16. https://doi.org/10.3389/fdata.2020.00010
Niazi, Y., Talebi, A., Mokhtari, M. H., & Vazifedoust, M. (2018). Presenting a soil moisture-based drought index derived from Global Land Data Assimilation System (GLDAS-SMDI) in Central Iran. Scientific- Research Quarterly of Geographical Data (SEPEHR), 27(107), 179–191. https://doi.org/10.22131/SEPEHR.2018.33574
Nogabni, masood sabooori, Rajabi, M., & Oskouei, E. A. (2022). Validation and Downscaling of SMAP Satellite Soil Moisture Data by the SMBDA Method Using Sentinel 1 Radar Products and Ground Data in SalehAbad Region of Ilam. Iran-Water Resources Research, 17(4), 144-160[in Persian]. http://www.iwrr.ir/article_144201.html
Oskouei, E. A., & Jamei, M. (2022). Production of Soil Moisture Maps in Iran from BEC Global Level 3 Products of SMOS Satellite. Journal of Watershed Management Research, 12(24), 65-76[in Persian]. https://jwmr.sanru.ac.ir/article-1-1112-fa.pdf
Pablos, M., González-Zamora, Á., Sánchez, N., & Martínez-Fernández, J. (2018). Assessment of SMADI and SWDI agricultural drought indices using remotely sensed root zone soil moisture. Proceedings of the International Association of Hydrological Sciences, 380, 55–66. https://doi.org/10.5194/piahs-380-55-2018
Palmer, W. C. (1965). Meteorological Drought. U.S. Weather Bureau, 45, 58. https://www.ncdc.noaa.gov/temp-and-precip/drought/docs/palmer.pdf
Piepmeier, J. R., Focardi, P., Horgan, K. A., Knuble, J., Ehsan, N., Lucey, J., Brambora, C., Brown, P. R., Hoffman, P. J., French, R. T., Mikhaylov, R. L., Kwack, E. Y., Slimko, E. M., Dawson, D. E., Hudson, D., Peng, J., Mohammed, P. N., De Amici, G., Freedman, A. P., … Njoku, E. G. (2017). SMAP L-Band Microwave Radiometer: Instrument Design and First Year on Orbit. IEEE Transactions on Geoscience and Remote Sensing, 55(4), 1954–1966. https://doi.org/10.1109/TGRS.2016.2631978
Ray, B., & Shaw, R. (2019). Urban Drought Emerging Water Challenges in Asia. In Disaster Risk Reduction, Methods, Approaches and Practices, (p. 1 online resource (427 pages)).
Sánchez, N., González-Zamora, Á., Piles, M., & Martínez-Fernández, J. (2016). A New Soil Moisture Agricultural Drought Index (SMADI) Integrating MODIS and SMOS Products: A Case of Study over the Iberian Peninsula. Remote Sensing, 8(4), 287. https://doi.org/10.3390/rs8040287
Savitzky, A., & Golay, M. J. E. (1964). Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Analytical Chemistry, 36(8), 1627–1639. https://doi.org/10.1021/ac60214a047
Souza, A. G. S. S., Ribeiro Neto, A., & Souza, L. L. de. (2021). Soil moisture-based index for agricultural drought assessment: SMADI application in Pernambuco State-Brazil. Remote Sensing of Environment, 252, 112124. https://doi.org/10.1016/j.rse.2020.112124
Stagge, J. H., Tallaksen, L. M., Gudmundsson, L., Van Loon, A. F., & Stahl, K. (2015). Candidate Distributions for Climatological Drought Indices (SPI and SPEI). International Journal of Climatology, 35(13), 4027–4040. https://doi.org/10.1002/joc.4267
Svoboda, M., & Fuchs, B. (2017). Handbook of Drought Indicators and Indices* (pp. 155–208). https://doi.org/10.1201/9781315265551-12
Teng, W., Rui, H., Strub, R., & Vollmer, B. (2016). Optimal Reorganization of NASA Earth Science Data for Enhanced Accessibility and Usability for the Hydrology Community. In Journal of the American Water Resources Association (Vol. 52, Issue 4, pp. 825–835). https://doi.org/10.1111/1752-1688.12405
Watson, A., Miller, J., Künne, A., & Kralisch, S. (2022). Using soil-moisture drought indices to evaluate key indicators of agricultural drought in semi-arid Mediterranean Southern Africa. Science of The Total Environment, 812, 152464. https://doi.org/10.1016/j.scitotenv.2021.152464
Zhu, Q., Wang, Y., & Luo, Y. (2021). Improvement of multi‐layer soil moisture prediction using support vector machines and ensemble Kalman filter coupled with remote sensing soil moisture datasets over an agriculture dominant basin in China. Hydrological Processes, 35(4), 1–22. https://doi.org/10.1002/hyp.14154