بررسی انتقال تعادلی و غیرتعادلی بروماید در خاکهای جنگلی و مرتعی در مقیاس آزمایشگاهی
محورهای موضوعی : مدیریت آب در مزرعه با هدف بهبود شاخص های مدیریتی آبیارینیما گلابی زاده 1 , محمدرضا دلالیان 2 , شهرام شاه محمدی کلالق 3 * , مریم حاج رسولی 4 , سیامک ساعدی 5
1 - دانشجوی دکتری، گروه علوم و مهندسی خاک، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران.
2 - استادیار، گروه علوم و مهندسی خاک، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران.
3 - دانشیار، گروه علوم و مهندسی آب، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران.
4 - استادیار، گروه علوم و مهندسی خاک، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران.
5 - استادیار، گروه علوم و مهندسی خاک، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران.
کلید واژه: مدل انتقال تودهای-پخش (CDE), انتقال نامتعارف, منحنی رخنه, انتقال فیکی, مدل روان-راکد (MIM),
چکیده مقاله :
زمینه و هدف: لازمه مطالعه و مدیریت بهتر انتقال املاح در محیط های متخلخل، شناخت رفتار انتقال آن ها با استفاده از مدل های مناسب می باشد. در این تحقیق، مدل های انتقال توده ای-پخش (CDE) و روان-راکد (MIM) به ترتیب بهعنوان مدل های فیزیکی تعادلی و غیرتعادلی برای شبیهسازی انتقال بروماید در ستونهای خاک جنگلی با بافت لوم رسی و خاک مرتعی با بافت لوم شنی (به طول 10 و قطر 6 سانتی متر) در دو حالت اشباع و غیراشباع بکار گرفته شدند.روش پژوهش: ستون های تهیه شده از خاک هوا خشک شده به قطر 6 و ارتفاع 10 سانتی متر جهت آزمایشهای رخنه برومید به کار گرفته شد. آزمایش رخنه بروماید در دو حالت نزدیک اشباع (تحت بار آبی 1- سانتی متر) و اشباع (تحت بار آبی 3 سانتی متر) انجام شد. اشباع نمودن ستون ها از قسمت پایین با محلول زمینه 01/0 مولار Ca(NO3)2 انجام شد. در حالت نزدیک اشباع، محلول ردیاب CaBr2 با غلظت 01/0 مولار (Co) برابر با یک حجم منفذی بهصورت پالسی از طریق دیسک نفوذ وارد ستون های اشباع شده از محلول زمینه گردید. در حالت اشباع نیز از یک ظرف ماریوت برای برقراری بار ثابت آبی سه سانتی متری استفاده شد. با شروع ورود پالس به ستون های خاک، نمونه های محلول خروجی به حجم 1/0 حجم منفذی به همراه درج زمان جهت تعیین غلظت بروماید در ظروف پلاستیکی جمع آوری شد. پس از ورود کامل پالس ردیاب (CaBr2) دوباره جریان اشباع ماندگار محلول زمینه (Ca(NO3)2) در ستون ها برقرار و غلظت بروماید با استفاده از یک دستگاه pH متر مجهز به الکترود انتخابگر برومید اندازه گیری شد. غلظتهای اندازهگیری شده تبدیل به غلظت نسبی (C/Co) گردید و منحنی های رخنه از ترسیم C/Co در مقابل زمان (t) و یا حجم منفذی به دست آمد.یافتهها: پارامترهای ضریب تبادل جرمی (ω) و کسر جزء روان (β) بهعنوان شاخص تشخیص انتقال تعادلی و غیرتعادلی، به ترتیب با داشتن مقادیر کوچکتر از 100 و کوچکتر از 1 در هر دو نوع خاک مورد مطالعه نشان دادند انتقال بروماید به صورت انتقال نامتعارف یا انتقال غیرفیکی و غیرتعادلی بوده و مدل روان-راکد، نسبت به مدل انتقال توده ای-پخش که بر اساس قانون انتشار فیکی و فرض انتقال تعادلی املاح بنا شده است کارآمدتر بوده و برای شبیهسازی بروماید در ستونهای خاک لوم رسی و لوم شنی توصیه میگردد. برازش و مقایسه منحنی های رخنه و مقادیر شاخصهای آماری ضریب تبیین (R2) و جذر میانگین مربعات خطا (RMSE) نیز کارایی مدل غیرتعادلی MIM را در شبیه سازی انتقال بروماید در خاک های جنگلی و مرتعی تائید کرد.نتایج: برازش بهتر منحنی های رخنه اندازه گیری شده و برآورد شده بروماید با مدل غیرتعادلی بخصوص در قسمت دم یا انتهایی منحنی های رخنه بیانگر دقت و کارایی بیشتر مدل غیرتعادلی می باشد. با توجه به اینکه نمونه ها بهصورت دست خورده در ستون ها جایگزین گشتند لذا می توان گفت شرایط ناهمگنی در ستون های مورد آزمایش برقرار بوده است و بر اساس گزارش Huang و همکاران (2005) و Berkowitz و همکاران (2008) ناهمگنی، می تواند یکی از دلایل توجیه کننده کارایی بهتر مدل های غیرتعادلی در تحقیق حاضر باشد. کارایی بهتر مدل غیرتعادلی روان-راکد نسبت به مدل تعادلی انتقال-پخش در این تحقیق آزمایشگاهی محدود و کنترل شده نمی تواند قضاوت محکم و مطمئنی در ارزیابی این مدلها باشد قضاوت دقیقتر، در گرو انجام تحقیقات و آزمایش ها در شرایط واقعی و مزرعه ای و با لحاظ کردن بیشتر پارامترهای مؤثر و دخیل اشاره شده خواهد بود.
Background and Aim: to better management of solute transport in porous media, it is essential to recognize their transport behavior using appropriate models. In this research, convection-dispersion equation (CDE) and mobile-immobile model (MIM), as physical equilibrium and non-equilibrium models, respectively, were used to simulate the bromide transport through saturated and unsaturated forest soil, with clay loam texture, and rangeland soil, with sandy loam texture, columns (diameter of 6 and height of 10 cm).Method: to obtain the BTCs, the PVC soil columns with a height of 10 and a diameter of 6 cm were prepared. The breakthrough experiment was carried out in near saturation and saturated condition under a water head of -1 and 3 cm, respectively. The soil columns were saturated from the bottom with a Ca(NO3)2 solution of 0.01 molar as the background solution. At near saturation, the CaBr2 solution with a concentration of 0.01 M equal to a pore volume was injected into the saturated columns of the background solution through the infiltration disk. A Mariotte bottle was used to establish a constant water head. After CaBr2 injection started, the effluents with a volume of 0.1 pore volume were collected at different times, and their bromide concentrations were determined using a pH-meter equipped with a bromide selector electrode. After the complete injection of CaBr2, the steady-state saturated flow of the background solution was re-established. The experiment continued until the bromide concentration in the effluent were almost zero. The measured concentrations, by dividing by the initial concentration, were converted to relative concentrations (C/Co). Then the BTCs was plotted as C/Co versus time or the number of pore volumes.Results: The values of mass transfer coefficient (ω<100) and mobile water fraction (β<1) as an indicator for determining the equilibrium and non-equilibrium indicated that bromide transport behavior within these columns was anomalous or non-Fickian transport. Hence, the non-equilibrium or the mobile-immobile model (MIM) is suitable and more efficient than the Fickian-based CDE model. The fitted breakthrough curves (BTCs) and the higher determination coefficient (R2) and the lower root mean square error (RMSE) values of the MIM model compared to those of the CDE confirmed the effectiveness of the MIM model in simulating bromide transport in the forest and rangeland soil columns.Conclusion: Better fit of measured and estimated breakthrough curves of bromide with non-equilibrium model compared to CDE equilibrium model, especially in the tail of breakthrough curves indicates more accuracy and the should be added efficiency of the non-equilibrium model. Given that the samples were replaced in the columns as disturbed, it can be said that heterogeneity conditions were established in the columns experiments. According to Huang et al. (2005) and Berkowitz et al. (2008), heterogeneity could be one of the reasons to justify the better performance of non-equilibrium models in the present study. The high efficiency of the non-equilibrium model compared to the equilibrium model in this controlled laboratory research cannot be a reliable judgment in evaluating these models. Accurate judgment will depend on conducting research and experiments in real and field conditions, taking into account more effective parameters.
Abbasi, F. (2007). Advanced Soil Physics. Tehran University Publications, Tehran [in Persian].
Arora, B., Mohanty, B.P. and McGuire, J.T. (2011). Inverse estimation of parameters for multidomain flow models in soil columns with different macropore densities. Water Resour. Res. 47(4): 1-17.
Asghari, S., Abbasi, F. and Neyshabouri, M.R. (2011). Effects of Soil Conditioners on Physical Quality and Bromide Transport Properties in a Sandy Loam Soil. Biosyst. Eng. 109: 90-97.
Bear, J. (2013). Dynamics of Fluids in Porous Media, Dover Publications, New York.
Benson, D.A., Wheatcraft, S.W. and Meerschaert, M.M. (2000a). Application of a fractional advection-dispersion equation. Water Resour. Res. 36(6): 1403-1412.
Benson, D.A., Wheatcraft, S.W. and Meerschaert, M.M. (2000b). The fractional-order governing equation of Lévy motion. Water Resour. Res. 36(6): 1413-1423.
Berkowitz, B., Emmanuel, S., and Scher, H. (2008). Non-Fickian transport and multiple-rate mass transfer in porous media. Water Resour. Res. 44: 1-16.
Berkowitz, B., and Scher, H. (1995). On characterization of anomalous dispersion in porous media. Water Resour. Res. 31:1461–1466.
Berkowitz, B., and Scher, H. (1997). Anomalous transport in random fracture networks. Phys. Rev. Lett. 79(20): 4038–4041.
Berkowitz, B., and Scher, H. (2008). Exploring the nature of non-Fickian transport in laboratory experiments. Adv. Water Res. 32(5): 750-755.
Bond, W.J., and Wierenga, P.J. (1990). Immobile water during solute transport in unsaturated sand columns. Water Resour. Res. 26(10): 2475-2481.
Ersahin, S., Papendick, R.I., Smith, J.L., Keller, C.K., and Manoranjan, V.S. (2002). Macropore transport of bromide as influenced by soil structure differences. Geoderma 108: 207-223.
Gao, G., Zhan, H., Feng, S., Huang, G., and Mao, X. (2009). Comparison of alternative models for simulating anomalous solute transport in a large heterogeneous soil column. J. Hydrol. 377(3-4): 391-404.
Hillel, D. (2013). Introduction to Soil Physics. Elsevier.
Huang, G., Huang, Q., Zhan, H., Chen, J., Xiong, Y., and Feng, S. (2005). Modeling contaminant transport in homogeneous porous media with fractional advection dispersion equation. Sci. China Ser. D Earth Sci. 48: 295-302.
Jarvis, N., Etana, A. and Stagnitti, F. (2008). Water Repellency, Near-Saturated Infiltration and Preferential Solute Transport in a Macroporous Clay Soil. Geoderma 143: 223–230.
Jury, W.A. (1982). Simulation of solute transport using a transfer function model. Water Resour. Res. 18: 363-368.
Jury, W.A. and Horton, R. (2004). Soil Physics. John Wiley & Sons.
Jury, W.A., and Roth, K. (1990). Transfer Function and Solute Movement through Soil: Theory and Applications. Birkhäuser Boston, Cambrige, Mass.
Kamra, S.K. and Lennartz, B. (2005). Quantitative Indices to Characterize the Extent of Preferential Flow in Soils. Environmen. Modell. Softw. 20: 903-915.
Moradi, G. and Mehdinejadiani, B. (2018). Modelling solute transport in homogeneous and heterogeneous porous media using spatial fractional advection–dispersion equation. Soil Water Res. 13(1):18–28.
Morsali, S., Babazadeh, H., Shahmohammadi-Kalalagh, S. andSedghi, H. (2019). Simulating Zn, Cd and Ni Transport in Disturbed and Undisturbed Soil Columns: Comparison of Alternative Models. Int. J. Environ. Res. 13(4), 721-734.
Pang, L. and M.E. Close. (1999). Non-equilibrium transport of Cd in alluvial gravels. J. Contam. Hydrol. 36: 185-206.
Pang, L., Close, M., Schneider, D., and Stanton, G. (2002). Effect of pore-water velocity on chemical non-equilibrium transport of Cd, Zn, and Pb in alluvial gravel columns. Contam. Hydrol. 57: 241-258.
Perfect, E., Sukop, M.C. and Haszler, E.R. (2002). Prediction of dispersivity for undisturbed soil columns from water retention parameters. Soil Sci. Soc. Am. J. 66: 696-701.
Safadoust, A., Amiri Khaboushan, E., Mahboubi, A.A., Gharabaghi, B., Mosaddeghi, M.R., Ahrens, B., and Hassanpour, Y. (2016). Comparison of three models describing bromide transport affected by different soil structure types. Arch. Agron. Soil Sci. 62(5), pp.674-687.
Safadoust, A., Mahboubi, A., Mosaddeghi, M.R., Gharabaghi, B., Unc, A., Voroney, P., and Heydari, A. (2012a). Effect of regenerated soil structure on unsaturated transport of Escherichia coli and bromide. J. Hydrol. 430–431:80–90.
Shahmohammadi-Kalalagh, S. and Beyrami, H. (2015). Modeling Bromide Transport in Undisturbed Soil Columns with the Continuous Time Random Walk. Geotech. Geol. Eng. 33: 1511-1518.
Shahmohammadi-Kalalagh, S. and Taran, F. (2019). Effect of Initial Concentration and Input Flux on Equilibrium and Non-Equilibrium Transport of Zn in Soil Columns. Int. J. Environ. Sci. Te. 16(11): 7565-7572.
Shahmohammadi-Kalalagh, Sh. and Taran, F. (2020). Efficiency of Physical Equilibrium and Non-Equilibrium Models for Simulating Contaminant Transport in Laboratory-Scale. Iran. J. Chem. Chem. Eng., (IJCCE).
Shahmohammadi-Kalalagh, S., Beyrami, H. and Taran, F. (2021). Bromide Transport through Soil Columns in the Presence of Pumice. Iran. J. Chem. Chem. Eng., (IJCCE).
Toride, N., Inoue, M. and Leij, F. (2003). Hydrodynamic dispersion in an unsaturated dune sand. Soil Sci. Soc. Am. J. 67(3): 703-712.
Zhen, Q., Zheng, J., He, H., Han, F. and Zhang, X. (2016). Effects of Pisha Sandstone Content on Solute Transport in a Sandy Soil. Chemosphere 144: 2214-2220.
_||_Abbasi, F. (2007). Advanced Soil Physics. Tehran University Publications, Tehran [in Persian].
Arora, B., Mohanty, B.P. and McGuire, J.T. (2011). Inverse estimation of parameters for multidomain flow models in soil columns with different macropore densities. Water Resour. Res. 47(4): 1-17.
Asghari, S., Abbasi, F. and Neyshabouri, M.R. (2011). Effects of Soil Conditioners on Physical Quality and Bromide Transport Properties in a Sandy Loam Soil. Biosyst. Eng. 109: 90-97.
Bear, J. (2013). Dynamics of Fluids in Porous Media, Dover Publications, New York.
Benson, D.A., Wheatcraft, S.W. and Meerschaert, M.M. (2000a). Application of a fractional advection-dispersion equation. Water Resour. Res. 36(6): 1403-1412.
Benson, D.A., Wheatcraft, S.W. and Meerschaert, M.M. (2000b). The fractional-order governing equation of Lévy motion. Water Resour. Res. 36(6): 1413-1423.
Berkowitz, B., Emmanuel, S., and Scher, H. (2008). Non-Fickian transport and multiple-rate mass transfer in porous media. Water Resour. Res. 44: 1-16.
Berkowitz, B., and Scher, H. (1995). On characterization of anomalous dispersion in porous media. Water Resour. Res. 31:1461–1466.
Berkowitz, B., and Scher, H. (1997). Anomalous transport in random fracture networks. Phys. Rev. Lett. 79(20): 4038–4041.
Berkowitz, B., and Scher, H. (2008). Exploring the nature of non-Fickian transport in laboratory experiments. Adv. Water Res. 32(5): 750-755.
Bond, W.J., and Wierenga, P.J. (1990). Immobile water during solute transport in unsaturated sand columns. Water Resour. Res. 26(10): 2475-2481.
Ersahin, S., Papendick, R.I., Smith, J.L., Keller, C.K., and Manoranjan, V.S. (2002). Macropore transport of bromide as influenced by soil structure differences. Geoderma 108: 207-223.
Gao, G., Zhan, H., Feng, S., Huang, G., and Mao, X. (2009). Comparison of alternative models for simulating anomalous solute transport in a large heterogeneous soil column. J. Hydrol. 377(3-4): 391-404.
Hillel, D. (2013). Introduction to Soil Physics. Elsevier.
Huang, G., Huang, Q., Zhan, H., Chen, J., Xiong, Y., and Feng, S. (2005). Modeling contaminant transport in homogeneous porous media with fractional advection dispersion equation. Sci. China Ser. D Earth Sci. 48: 295-302.
Jarvis, N., Etana, A. and Stagnitti, F. (2008). Water Repellency, Near-Saturated Infiltration and Preferential Solute Transport in a Macroporous Clay Soil. Geoderma 143: 223–230.
Jury, W.A. (1982). Simulation of solute transport using a transfer function model. Water Resour. Res. 18: 363-368.
Jury, W.A. and Horton, R. (2004). Soil Physics. John Wiley & Sons.
Jury, W.A., and Roth, K. (1990). Transfer Function and Solute Movement through Soil: Theory and Applications. Birkhäuser Boston, Cambrige, Mass.
Kamra, S.K. and Lennartz, B. (2005). Quantitative Indices to Characterize the Extent of Preferential Flow in Soils. Environmen. Modell. Softw. 20: 903-915.
Moradi, G. and Mehdinejadiani, B. (2018). Modelling solute transport in homogeneous and heterogeneous porous media using spatial fractional advection–dispersion equation. Soil Water Res. 13(1):18–28.
Morsali, S., Babazadeh, H., Shahmohammadi-Kalalagh, S. andSedghi, H. (2019). Simulating Zn, Cd and Ni Transport in Disturbed and Undisturbed Soil Columns: Comparison of Alternative Models. Int. J. Environ. Res. 13(4), 721-734.
Pang, L. and M.E. Close. (1999). Non-equilibrium transport of Cd in alluvial gravels. J. Contam. Hydrol. 36: 185-206.
Pang, L., Close, M., Schneider, D., and Stanton, G. (2002). Effect of pore-water velocity on chemical non-equilibrium transport of Cd, Zn, and Pb in alluvial gravel columns. Contam. Hydrol. 57: 241-258.
Perfect, E., Sukop, M.C. and Haszler, E.R. (2002). Prediction of dispersivity for undisturbed soil columns from water retention parameters. Soil Sci. Soc. Am. J. 66: 696-701.
Safadoust, A., Amiri Khaboushan, E., Mahboubi, A.A., Gharabaghi, B., Mosaddeghi, M.R., Ahrens, B., and Hassanpour, Y. (2016). Comparison of three models describing bromide transport affected by different soil structure types. Arch. Agron. Soil Sci. 62(5), pp.674-687.
Safadoust, A., Mahboubi, A., Mosaddeghi, M.R., Gharabaghi, B., Unc, A., Voroney, P., and Heydari, A. (2012a). Effect of regenerated soil structure on unsaturated transport of Escherichia coli and bromide. J. Hydrol. 430–431:80–90.
Shahmohammadi-Kalalagh, S. and Beyrami, H. (2015). Modeling Bromide Transport in Undisturbed Soil Columns with the Continuous Time Random Walk. Geotech. Geol. Eng. 33: 1511-1518.
Shahmohammadi-Kalalagh, S. and Taran, F. (2019). Effect of Initial Concentration and Input Flux on Equilibrium and Non-Equilibrium Transport of Zn in Soil Columns. Int. J. Environ. Sci. Te. 16(11): 7565-7572.
Shahmohammadi-Kalalagh, Sh. and Taran, F. (2020). Efficiency of Physical Equilibrium and Non-Equilibrium Models for Simulating Contaminant Transport in Laboratory-Scale. Iran. J. Chem. Chem. Eng., (IJCCE).
Shahmohammadi-Kalalagh, S., Beyrami, H. and Taran, F. (2021). Bromide Transport through Soil Columns in the Presence of Pumice. Iran. J. Chem. Chem. Eng., (IJCCE).
Toride, N., Inoue, M. and Leij, F. (2003). Hydrodynamic dispersion in an unsaturated dune sand. Soil Sci. Soc. Am. J. 67(3): 703-712.
Zhen, Q., Zheng, J., He, H., Han, F. and Zhang, X. (2016). Effects of Pisha Sandstone Content on Solute Transport in a Sandy Soil. Chemosphere 144: 2214-2220.