تأثیر پرلیت بر تغییرات فرسایش پاشمانی در سه نوع خاک برداشت شده از کاربری های مختلف
محورهای موضوعی : مدیریت آب در مزرعه با هدف بهبود شاخص های مدیریتی آبیاریلیلا غلامی 1 * , آرمین بالوایه 2 , نبیه کریمی 3 , فاطمه Shokrian 4
1 - گروه مهندسی آبخیزداری، دانشکده منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران
2 - گروه مهندسی آبخیزداری، دانشکده منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ایران
3 - گروه مهندسی آبخیزداری، دانشکده منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ایران
4 - گروه مهندسی آبخیزداری، دانشکده منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری ایران
کلید واژه: فرسایش آبی, افزودنی خاک, پاشمان پاییندست, پاشمان بالادست, کاربری اراضی,
چکیده مقاله :
فرسایش پاشمانی بهعنوان اولین مرحله از فرایند فرسایش آبی، توسط اثر قطرات باران بر سطح خاک ایجاد میشود. مقدار پاشمان خاک با تغییر در خصوصیات فیزیکی خاک میتواند تغییر کند. بنابراین حفاظت از خاک سطحی باعث میشود که اثر انرژی قطرات باران بر خاک سطحی کاهش یافته و در نتیجه مقادیر رسوب حاصل از فرآیند فرسایش پاشمانی نیز کاهش یابد. بنابراین پژوهش حاضر با ارزیابی عملکرد پرلیت با سطحهای 50،25 و 75 درصد در شدت بارندگی 80 میلیمتر بر ساعت روی فرسایش پاشمانی در سه خاک با کاربری جنگلی، مرتعی و زراعی انجام پذیرفت. آزمایشها در شرایط آزمایشگاهی و در مقیاس فنجانهای پاشمان انجام شد و سپس مقادیر پاشمان در مقادیر مختلف پرلیت و کاربریهای متفاوت اندازهگیری شد. نتایج نشان داد که کاربرد مقادیر مختلف پرلیت در کاربریهای مختلف باعث کاهش پاشمان کل و پاشمان خالص نسبت به تیمار شاهد شد. نتایج همچنین نشان داد که تاثیر جداگانه کاربریهای مختلف و مقادیر مختلف پرلیت بر پاشمان کل و خالص در سطح اعتماد 99 درصد معنیدار بود و نیز تاثیر متقابل مقادیر مختلف پرلیت و کاربریهای مختلف بر پاشمان کل در سطح اعتماد 99 درصد معنی-دار بود. همچنین خاک کاربریهای مرتع و زراعی، پرلیت با مقدار 25 درصد بیشترین تاثیر را در مهار فرسایش پاشمانی نسبت به دو مقدار دیگر داشت. این مقدار منجر به کاهش پاشمان کل به مقدار 27/55 و 48/57 درصد، پاشمان خالص به مقدار 11/55 و 03/91 درصد، پاشمان بالادست به مقدار 78/62 و 85/36 درصد و پاشمان پاییندست به مقدار 23/55 و 72/66 درصد شد.
Splash erosion as the first stage of the water erosion process, caused by the raindrops effect on soil surface. The amount of soil splash can change with change in characteristics of soil physical. The conservation from the surface soil cause the effect of raindrop energy reduces on the surface soil and thus the amount of sediment from the splash erosion process decrease. Therefore, present study was conducted to performance evaluation of perlite at levels of 25, 50 and 75%in rainfall intensity of 80mmh-1 on splash erosion in three soil types with landuse of forestry, rangeland and agricultural. Experiments were carried in laboratory conditions and scale of splash cups and then splash erosion measured in different perlite amounts and various landuses. The results showed that application of different perlite amounts in the various landuses reduced the total and net splash compared control treatment. The results also showed that the separate effect of various landuses and different perlite on total and net splash was significant at level of 99%and also the interaction effect different perlite amounts and various landuses on total splash was significant at 99%. Also, the landuses soil of rangeland and agriculture, the perlite with amount of 25%had the more effect on control of splash erosion toward two another amounts. This amount caused the reducing the total splash with rate of 55.27 and 57.48%, net splash with rate of 55.11 and 91.03%up slope splash with rate of 62.78 and 36.85%and down slope splash with rate of 55.23 and 66.72%.
آزموده، ع.، کاویان، ع.، سلیمانی، ک. و وهابزاده، ق. 1389. مقایسه میزان رواناب و فرسایش در خاکهای تحت پوشش کاربریهای جنگل، زراعی و باغ با استفاده از شبیهساز باران. مجله آب و خاک، 24(3): 500-490.
اخوان، ا. و میثاقی، ف. ارزیابی تأثیر اصلاحگرخاک (پرلیت) در میزان نگهداشت رواناب و زهآب در مسیر حفظ آب و توسعه مدیریت شهری. هشتمین کنفرانس علمی پژوهشی آبخیزداری و مدیریت منابع آب و خاک، 9 ص.
حاجعباسی، م.ع.، بسالتپور، ا. و مللی، ا. 1386. اثر تبدیل مراتع به اراضی کشاورزی بر برخی ویژگیهای شیمیایی و فیزیکی خاکهای جنوب و جنوبغربی اصفهان. مجله علوم و فنون کشاورزی و منابع طبیعی، (11)42: 534-525.
حقجو، ز.، غلامی، ل.، کاویان. ع. و موسوی، س.ر. 1396. اثر پلیوینیلاستات بر پاشمان خاک. دوازدهیمن همایش آبخیزداری ایران، ملایر، 5 ص.
رضاییپاشا، م.، کاویان، ع. و وهابزاده، ق. 1390. مطالعه آزمایشگاهی فرسایش پاشمانی و ارتباط آن با خصوصیات خاک در سه کاربری اراضی مجاور هم (مطالعه موردی: حوضه کسیلیان). مجله علوم و فنون کشاورزی و منابع طبیعی، علوم آب و خاک، ۱۵(58): ۲۵۷-۲۶۹.
صادقی، س.ح.ر.، رئیسی، م.ب. و حزباوی، ز. 1394. اثر کاربرد پلیآکریلآمید در مهار فرسایش پاشمانی از خاک تحت تأثیر پدیده انجماد- ذوب نشریه آب و خاک (علوم و صنایع کشاورزی)، 6(29): 1611-1601.
قضاوی، ر.، امیدوار، ا. و فدایی، ف. 1397. اثر سوپرجاذبهای پرلیت، زئولیت و A200 بر فرسایش سطحی و رسوبزایی خاک. مجله پژوهش آب ایران، 12(2): 129-121.
کاویان، ع.، حیاوی، ف. و بروغنی، م. 1391. اثر پلیاکریلآمید بر نرخ فرسایش پاشمانی در خاکهای مختلف با استفاده از شبیهساز باران. نشریه مرتع و آبخیزداری، 67 (2): 456-442.
مرادیان، م.، ملکی، ع. و عالینژادیان، ا. 1398. تأثیر پلیمر سوپر جاذب بلور آب A، پرلیت و زئولیت بر ویژگیهای فیزیکی خاک لوم شنی. تحقیقات آب و خاک ایران، 50(5): 1230-1219.
هنربخش، ا. و حیاوی، ف. 1396. مطالعه آزمایشگاهی فرسایش پاشمانی در بافتهای مختلف خاک با استفاده از شبیهساز باران. پژوهشهای ژئومورفولوژی کمی، 3(6): 162-151.
Arnaez J., Lasanta T., Ruiz-Flano P. and Ortigosa L. 2007. Factors affecting runoff and erosion under simulated rainfall in Mediterranean Vineyards. Soil and Tillage Research, )93(: 324-334.
Bancy, M.M. 1994. Splash transport of soil on a slope under various crop covers. Agricultural Water Management, 26: 59-66.
Bu, C.F., Wu, S. and Yang, K.B. 2014. Effects of physical soil crusts on infiltration and splash erosion in three typical Chinese soils. International Journal of Sediment Research, 29(4): 491-501.
Duiker, S.W., Flanagan, D.C. and Lal, R. 2001. Erodibility and infiltration characteristics of fire major soils of southwest Spain. Catena, 45: 103-121.
Ekwue, E.I. 1991. The effects of soil organic matter content, rainfall duration and aggregate size on soil detachment. Soil Technology, 4: 197-207.
Emadi, M., Baghernejad, M. and Memarian, H.R. 2009. Effect of land-use change on soil fertility characteristics within water-stable aggregates of two cultivated soils in northern Iran. Land Use Policy, 26(2): 52-457.
Farres, P.J. 1987. The dynamics of rain splash erosion and the role of soil aggregate stability. Catena, 14: 119-130.
Geibler, C., Kuhn, P. Bohnk, M., Bruelheide, H., Shi, X. and Scholten, T. 2010. Splash erosion potential under tree canopies in subtropical SE China. Catena, 1-9.
Gholami, L., Sadeghi, S.H.R. and Homaee, M. 2013. Straw mulching effect on splash erosion, runoff and sediment yield from eroded plots. Soil Science Society of America Journal, 77: 268-278.
Gholami, L., Sadeghi, S.H.R. and Homaee, M. 2012. Efficiency of rice straw mulch as a soil amendment to reduce splash erosion. Erosion and Sediment Yields in the Changing Environment (Proceedings of a symposium held at theInstitute of Mountain Hazards and Environment, CAS-Chengdu, China, 11–15 October 2012) (IAHS Publ. 356, 2012), 173-177.
Gholami, L., Sadeghi, S.H.R. and Homae, M. 2016. Different effects of sheep manure conditioner on runoff and soil loss components in eroded soil. Catena, 139: 99-104
Gholami, L., Hasanzadeh, N. and Khaledi Darvishan, A. 2018. Effect of sawdust on splash erosion in laboratory condition. Agriculture and Forestry, 64(1): 51-56.
Gholami, L., Karimi, N. and Kavian, A. 2019. Soil and water conservation using biochar and various soil moisture in laboratory conditions. Catena, 182: 104151.
Huang, J., Wu, P. and Xining. Z. 2013. Effects of rainfall intensity, underlying surface and slope gradient on soil infiltration under simulated rainfall experiments. Catena, 104: 93-102.
Huang, M.H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R. and Yang, P. 2001. Room-temperature ultraviolet nanowire nanolasers. Science, 292(5523):1897-189.
Hudson, N. 1995. Soil conservation. No. 3. Ed. BT Batsford.
Jordan, A. and Martinez, Z. 2008. Soil loss and runoff rates on unpaved forest roads in southern Spain after simulated rainfall. Forest Ecology and Management, 255(3): 913- 919.
Khaledi Darvishan, A., Banasik, K. Sadeghi, S.H.R., Gholami, L. and Hejduk, L. 2015. Effects of rain intensity and initial soil moisture on hydrological responses in laboratory conditions. International Agrophysics, 29: 165-172.
Khaledi Darvishan, A., Sadeghi, S.H.R., Homaee, M. and Arabkhedri, M. 2014. Measuring sheet erosion using synthetic color-contrast aggregates. Hydrological Process, 28(15): 4463-4471.
Kukal, S.S. and Sarkar, M. 2010. Splash erosion and infiltration in relation to mulching and polyvinylalcohol application in semi-arid tropics. Archive of Agronomy and Soil Science, 56(6): 697-705.
Lado, M., Ben-Hur, M. and Shainberg, I. 2004. Soil wetting and texture effects on aggregate stability, seal formation and erosion. Soil Science Society of America Journal, 68(6): 1992-1999.
Li D., Li Y.K., Christians N.E. and Minner D.D. 2000. Inorganic soil amendment effects on sand-based sports turf media. Alliance of Crop, Soil, and Environmental Science Societies, 40(4): 1121-1125.
Luk, S.H. and Hamilton, H. 1986. Experimental effect of antecedent moisture and soil strength on rainwash erosion of two luvisols. Geoderma, 37: 29-43.
Mizugaki, Sh., K. Nanko and Y. Onda. 2010. The effect of slope angle on splash detachment in an unmanaged Japanese cypress plantation forest. Hydrological Processes, 24: 576-587.
Molina, A., Govers, G., Vanacker, V., Poesen, J., Zeelmaekers, E. and Cisneros, F. 2007. Runoff generation in a degraded Andean ecosystem: Interaction of vegetation cover and land use. Catena, 71(2): 357–370.
Morgan, R.P.C. 1978. Field studies of rainsplash erosion. Earth Surface Processes and Landforms. 3: 295-299.
Qinjuan, Ch., Qiangguo, C. and Wenjun, M. 2008. Comparative Study on rain splash erosion of representative soils in China. Chinese Geographical Science, 18(2): 155–161.
Romkens, M.J.M., Helming, K. and Prasad, S.N. 2001. Soil erosion under different rainfall intensities, surface roughness and soil water regimes. Catena, 46: 103-123.
Sadeghi, S.H.R., Hedayatizadeh, R., Naderi, H. and Alizadeh, M. 2008. Comparison of runoff and sediment production in different quaternary formations in Sarachah Amari rangelands of Birjand. Rangeland, 4: 449-463.
Sadeghi, S.H.R. Kiani Harchegani, M. and Asadi, H. 2017. Variability of particle size distributions of upward/downward splashed materials in different rainfall intensities and slopes. Geoderma, 290: 100-106.
Singh, M.J and, Khera, K.L. 2008. Soil erodibility indices under different land uses in Lower Shiwaliks. Tropical Ecology, 49(2): 113-119.
Tang, K.C., Liao, E., Ong, W.L., Wong, J.D.S., Agarwal, A., Nagarajan, R. and Yobas, L. 2006. Evaluation of bonding between oxygen plasma treated Polydimethyl Siloxane and passivated silicon. In Journal of Physics: Conference Series, 70(2): 679-690.
Unger P.W., Fryrear D.W. and Lindstrom M.J. 2006. Soil conservation. American society of agronomy, Chapter 21(4): 87-111.
Walling, D.E., Collins, A.L., Sichingabula, H.M. and Leeks, G.J.L. 2001. Integrated assessment of catchment suspended sediment budgets: a Zambian example. Land Degradation and Development, 12(5): 387-415.
Zachar, Z. and Bingham, P.M. 1982. Regulation of white locus expression: the structure of mutant alleles at the white locus of Drosophila melanogaster. Cell, 30(2): 529-541.
_||_