حل تحلیلی معادله حاکم بر جریان غیردارسی به روش ریاضی آنالیز هموتوپی
محورهای موضوعی : مدیریت منابع آبامیر حسین آروین 1 , محمد هادی فتاحی 2 * , محمد صدقی اصل 3 , عباس محمدی 4
1 - گروه مهندسیعمران، واحد مرودشت، دانشگاه آزاد اسلامی، مرودشت، ایران.
2 - گروه مهندسیعمران، واحد مرودشت، دانشگاه آزاد اسلامی، مرودشت، ایران.
3 - گروه علومخاک، دانشکده کشاورزی، دانشگاه یاسوج، یاسوج، ایران.
4 - گروه ریاضی، دانشکده علومپایه، دانشگاه یاسوج، یاسوج، ایران.
کلید واژه: روش HAM, نیمرخ سطح آب, حل تحلیلی, محیط متخلخل, مصالح گرد و تیزگوشه, دادههای آزمایشگاهی,
چکیده مقاله :
زمینه و هدف: روش آنالیز هموتوپی (HAM) اولین بار توسط لیائو (1992) برای حل معادلات تابعی پیشنهاد شد. این روش مبتنی بر هموتوپی است و یک راهحل تقریبی- تحلیلی برای معادلات تابعی ارائه میدهد. در سالهای اخیر، این روش و اصلاحات آن به طور موثر برای حل طیف وسیعی از مسائل خطی و غیرخطی در علوم کاربردی برای یافتن جوابهای سری انواع مختلف معادلات غیرخطی، از جمله معادلات جبری، معادلات دیفرانسیل معمولی، معادلات دیفرانسیل جزئی و معادلات دیفرانسیل-انتگرال مورد استفاده قرار گرفته است .(Abbasbandy et al. 2006) هدف از این تحقیق ارائه یک حل تحلیلی زودیافت با دقت قابل قبول برای معادله غیرخطی جریان غیردارسی در محیطهای درشت دانه با استفاد از روش HAM میباشد.که محققان قبلی به انجام تحقیقات بیشتر در این زمینه توصیه کرده بودند.روش پژوهش: در این پژوهش ابتدا معادله حاکم بر جریان غیردارسی برای اولین بار به روش HAM حل شده است، سپس پروفیل های سطح آب معادله نهایی روش HAM به ازای 6 دبی ورودی با شرایط مرزی متفاوت در دو محیط متخلخل درشتدانه با مصالح گرد و تیزگوشه بدست آورده شد. و نتایج پروفیل سطحآب بدست آورده شده از روش HAM با دادههای آزمایشگاهی صدقیاصل(2010) که درآزمایشگاه اشتوتگارت آلمان بدست آمده، مقایسه شده است. از تابع هدف نرمال (NOF) برای مقایسه جوابهای روش HAM با دادههای آزمایشگاهی صدقیاصل(2010) استفاده شده است. یافتهها: مقایسه نتایج روش HAM با دادههای آزمایشگاهی صدقیاصل (2010) تحت شرایط مرزی بالادست و پاییندست به ازای دبیهای متفاوت و با شیب نزدیک به افق S = 0.00001 صورت گرفته است. نتایج نشان دادهاند که دبی های q=30 lit/s، با درصدخطای NOF برابر 0.000099828 در محیط متخلخل تیزگوشه وq =26.25 lit/s، با درصدخطای NOF برابر 0.000102162 در محیط متخلخل گردگوشه به ازای دبیهای ورودی بیشتر، دقت بهتری نسبت به دادههای آزمایشگاهی را دارند. این روش در شیبهای افق دارای جوابهای منطقی و پروفیلهای سطح آب در روش HAM و دادههای آزمایشگاهی در اکثر نقاط برهم منطبق و یا نزدیک به هم بوده است، در شیبهای بالاتر به علت تاثیر شیب و نیروی گرانش دچار نوعی تورم در پروفیل جریان میشود که از مبحث جریان ماندگار و یکنواخت خارج است و خود نیازمند تحقیق دیگری است.نتایج: نتایج نشان داده که پروفیل سطح آب در بیشتر موارد به هم نزدیک هستند و نشان دهنده دقت روش توسعه یافته بر پایه آنالیز HAM میباشد. با این حال هنگامی که اختلاف تراز آب بالادست و پایین دست زیاد میشود، درصد خطا بالا می رود. به عبارت دیگر با افزایش گرادیان هیدرولیکی در محیط متخلخل خطا نیز افزایش مییابد. در نهایت با بررسی نتایج روش HAM نسبت به دادههای آزمایشگاهی، میتوان نتیجه گرفت که این روش، در محیط متخلخل با مصالح تیزگوشه نسبت به مصالح گردگوشه به ازای دبیهای بیشتر دقت بهتری را نشان می دهد که به دلیل سرعت جریان و تخلخل بالا تر در این محیط می باشد.
Background and Aim: The Homotopy Analysis Method (HAM) was first proposed by Liao (1992) to solve functional equations. This method is based on homotopy and provides an approximate-analytical solution for functional equations. In recent years, this method and its modifications have been effectively used to solve a wide range of linear and nonlinear problems in applied sciences to find solutions to series of various types of nonlinear equations, including algebraic equations, ordinary differential equations, partial differential equations, and differential-integral equations (Abbasbandy et al. 2006). The purpose of this research is to provide an analytical solution of time delay with acceptable accuracy for the non-linear equation of non-Darcy flow in coarse-grained media using the HAM method, which previous researchers had recommended to conduct further research in this field. Method:In this research, the governing equation of the non-Darcy flow was solved by the HAM method for the first time, then the water level profiles of the final equation of the HAM method obtained for the 6 inlet flow rates with different boundary conditions and in two coarse-grained porous media including rounded and sharp-edged materials. The results of the water level profile using the HAM method have been compared with the laboratory data of Sedghi Asal (2010) reported at the Stuttgart laboratory in Germany. The normal objective function (NOF) has been used to compare the HAM method results with the experimental data of Sedghi Asal (2010). Results: The comparison of the results of HAM method with the experimental data of Sedghi Asal (2010) has been done under upstream and downstream boundary conditions for different discharges and with a slope close to the horizon S = 0.00001. The results have shown that flow rates of q=30 lit/s, with a NOF error percentage of 0.000099828 in the porous medium of sharp corners and q = 26.25 lit/s, with a NOF error percentage of 0.000102162 in the porous medium of round corners depict better accuracy than the experimental data in higher input flow rates. This method has logical solutions in horizon slopes and the water level profiles in HAM method and experimental data have coincided or are close to each other in most of the points. However, the subject of permanent and uniform flow needs a dependent research. Conclusion: The results showed that the water level profiles are close to each other in most cases. This illustrates the accuracy of the developed approach based on HAM method. However, when the difference between the upstream and downstream water levels increases, the percentage of error escalates. In other words, with the increase of the hydraulic gradient in the porous medium, the error also grows. Finally, by evaluating the results of the HAM method compared to the laboratory data, it can be concluded that this method shows better accuracy in the porous medium with sharp-cornered materials compared to round-cornered materials due to higher flow rates and higher porosity of this media.
Eck, B.J., Barrett, M.E., Charbeneau, R.J. (2012). Forchheimer flow in gently sloping layers: Application to drainage of porous asphalt. Water Resour. Res. 48, W01530. Doi: 10.1029/2011WR010837.
Gikas, G.D., Yiannakopoulou, T., Tsihrintzis, V.A. (2006). Modeling of non-point source pollution in a mediterranean drainage basin. Environmental Modeling and Assessment 11, 219–233.
Hoseini, S., Pirbodaghi, T., Ahmadian, M., Farrahi, G, (2009). On the large amplitude free vibrations of tapered beams: an analytical approach. Mech. Res. Commun. 36(8), 892–897.
Kimiaeifar, A., Domairry, G., Mohebpour, S., Sohouli, A., Davodi, A, (2011). Analytical solution for large deflections of a cantilever beam under nonconservative load based on Homotopy analysis method. Numer. Methods Partial Differ. Equ. 27(3), 541–553.
Khan, Y., Wu, Q. (2011). Homotopy perturbation transform method for nonlinear equations using He’s polynomials. Computers and Mathematics with Applications, 61: 1963-1967.
Khan, Y.; Faraz, N.; Yildirim, A.; Wu, Q. (2011) A Series Solution of the Long Porous Slider. Tribol. Trans., 54, 187–191.
Kimiaeifar, A., Lund, E., Thomsen, O.T, (2012). Series solution for large deflections of a cantilever beam with variable flexural rigidity. Meccanica 47(7), 1787–1796.
Khan, Y., Vazquez-Leal, H., Faraz, N. (2013). An auxiliary parameter method using Adomian polynomials and Laplace transformation for nonlinear differential equations. Applied Mathematical Modelling, 37: 2702-2708.
Liu, Ling ; Li, Jing ; Liao, Shijun, (2022). Explicit Solutions of MHD Flow and Heat Transfer of Casson Fluid over an Exponentially Shrinking Sheet with Suction, Nanomaterials (Basel, Switzerland), Vol.12 (19), p.3289.
Liu, L.; Rana, J.; Liao, S, (E 2021). Analytical solutions for the hydrogen atom in plasmas with electric, magnetic, and Aharonov-Bohm flux fields. Phys. Rev. 103, 023206.
Moutsopoulos K.N. (2009) Exact and approximate analytical solutions for unsteady fully developed turbulent flow in porous media and fractures for time dependent boundary conditions. J. of Hydrology 369(1-2), 78-89.
Maleki, M., Tonekaboni, S.A.M., Abbasbandy, S, (2014). A Homotopy analysis solution to large deformation of beams under static arbitrary distributed load. Appl. Math. Model. 38(1), 355–368.
Ramzan, M.; Bilal, M.; Chung, J.D.; Lu, D.C, Farooq, U, ,( 2017). Impact of generalized Fourier’s and Fick’s laws on MHD 3D second grade nanofluid flow with variable thermalconductivity and convective heat and mass conditions. Phys. Fluids , 29, 093102.
Sedghi-Asl, M. (2010) Investigation of Dupuit Approximate Limits for gradually varied flow in coarse grained porous media. PhD Dissertation, Department of Irrigation and Reclamation, College University of Agriculture and Natural Resources, University of Tehran.
Sedighi, H.M., Shirazi, K.H., Zare, J, (2012). An analytic solution of transversal oscillation of quintic non-linear beam with Homotopy analysis method. Int. J. Non-Linear Mech. 47(7), 777–784.
Sedghi-Asl, M., Rahimi, H., Farhoudi, J., Hoorfar, A., Hartmann, S. (2014). 1-D fully-developed turbulent flow through coarse porous medium. J. Hydrol. Eng. ASCE. Doi: 10.1061/ (ASCE) HE.1943-5584. 0000937.
Sedghi-Asl, M. and Ansari, E. (2016). Adoption of extended Dupuit–Forchheimer assumptions to non-Darcy flow problems. Transp. Porous Med. 113(3): 457-468.
Wang, J., Chen, J.-K., Liao, S, (2008). An explicit solution of the large deformation of a cantilever beam under point load at the free tip. J. Comput. Appl. Math. 212(2), 320–330.
Xinhui Si, Liancun Zheng, Xinxi n Zhang, Xinyi Si, (2012). Homotopy analysis method for the asymmetric laminar flow and heat transfer of viscous fluid between contracting rotating disks, Appl. Math. Model. 36. 1806–1820.
Xu, D.L.; Liu, Z.( 2020). A study on nonlinear steady-state waves at resonance in water of finite depth by the amplitude-based Homotopy Analysis Method. J. Hydrodyn. 32, 888–900.
Yang, X.Y.; Li, Y.( 2022). On bi-chromatic steady-state gravity waves with an arbitrary included angle. Phys. Fluids, 34, 032107.
Yu, Q.( 2020). Wavelet-based homotopy method for analysis of nonlinear bending of variable-thickness plate on elastic foundations. Thin-Walled Struct.157, 107105.
_||_