تعیین ضرایب سینتیکی و ترمودینامیکی و حذف فلزات سنگین از محلولهای آبی توسط نانو ذره آهن صفرظرفیتی و نانواکسیدمس
محورهای موضوعی : مدیریت آب در مزرعه با هدف بهبود شاخص های مدیریتی آبیاریرقیه حمزه نژاد 1 , ابراهیم سپهر 2 , عباس صمدی 3 , میرحسن رسولی صدقیانی 4 , حبیب خداوردیلو 5
1 - دانشگاه ارومیه
2 - دانشگاه ارومیه
3 - دانشگاه ارومیه
4 - دانشگاه ارومیه
5 - دانشگاه ارومیه
کلید واژه: سنتیک و ترمودینامیک جذب, لانگمیر, همدماهای جذب, نانو اکسید مس, نانو ذره آهن صفر ظرفیتی,
چکیده مقاله :
در تحقیق حاضر، سنتیک و ترمودینامیک جذب عناصر کادمیم، سرب، مس و روی توسط نانو ذره آهن صفر ظرفیتی (nZVI) و نانو اکسید مس (nCuO) از محلول های آبی تحت غلظت های اولیه، دما و زمان های مختلف بررسی شد. نتایج نشان داد با افزایش زمان تماس، کارایی حذف و ظرفیت جذب عناصر افزایش یافت. در بین معادلات سینتیکی برازش داده شده برای جذب عناصر، مدل شبه درجه دوم با ضریب تبیین 99/0 تا 00/1 در مقایسه با مدل شبه درجه اول، ایلویچ و تابع نمایی برازش بهتری داشت. داده های آزمایشی با مدل جذب لانگمیر نسبت به مدل های فروندلیچ، تمکین و دوبینین-رادوشکویچ برازش بهتری داشتند. میزان جذب عناصر توسط نانو ذره آهن صفر ظرفیتی بیشتر از نانو اکسید مس بدست آمد، به طوری که حداکثر جذب تک لایه ای لانگمیر(qmax) برای عناصر کادمیم، سرب، مس و روی توسط نانو ذره آهن صفر ظرفیتی به ترتیب 218، 239، 242 و 215 میلی گرم بر گرم و توسط نانو اکسید مس به ترتیب 90، 176، 100 و 76 میلی گرم بر گرم به دست آمد. مقادیر انرژی آزاد جذب (E) محاسبه شده از طریق معادله دوبینین-رادوشکویچ و پارامترانرژی آزاد گیبس (ΔG) به ترتیب بیانگر جذب فیزیکی عناصر بر روی نانو ذرات و خودبخودی واکنش جذب است. فاکتور جداسازی لانگمیر (RL) برای نانو ذرات مورد بررسی 50/0- 03/0 بدست آمد که نشان دهنده جذب مطلوب عناصر بر روی نانو ذرات می باشد.
In order to study the equilibrium, kinetic and thermodynamic of cadmium (Cd), lead (Pb), copper (Cu) and zinc (Zn) adsorption by nano zero valent iron (nZVI) and nano copper oxide (nCuO), batch experiments carried out with different initial concentration of the metals at different time and temperature. The results showed that the removal efficiency and adsorption capacity of nano particlesincreased with increasing initial concentration. Among adsorption kinetic models, pseudo second order model was better fitted for experimental data (R2=0.99-1.00). The adsorption data were well fitted with Langmuir model compared to Freundlich, Temkin and Dubinin-Radushkevich models. Maximum mono layer adsorption (qmax) of Cd, Pb, Cu and Zn were obtained 218, 239, 242 and 215 mg g-1 for nano zero valent iron and 90, 176, 100 and 76 for nano copper oxide respectively. The sorption energy parameter (E) of Dubinin-Radushkevich isotherm and Gibbs free energy change (ΔG) indicated that the metals adsorption processes were physical and spontaneous. The separation factor of Langmuir (RL) indicated that the sorption reactions of metals by the nano particles is favorable (RL=0.03-0.50).
ستوده، ا.، احمدی مقدم، م.، مرتضوی، م.س، و آقایی، ب. 1389. بررسی کارایی نانو ذرات آهن صفر ظرفیتی در حذف سرب از آب. اولین همایش ملی دانشجویی مدیریت و فناوریهای نوین در علوم بهداشتی، سلامت و محیط زیست، دانشکده بهداشت دانشگاه علوم پزشکی تهران، تهران، 9 و 10 آذر 1389. 9 صفحه.
مرادی، م. 1388. مطالعه تجربی جداسازی یونهای فلزات سنگین از محلول آبی توسط نانو ذرات مغناطیسی اکسیدآهن پوشانده شده با پلی وینیل الکل. پایاننامه کارشناسی ارشد، وزارت علوم، تحقیقات و فناوری، دانشگاه صنعتی اصفهان، دانشکده مهندسی شیمی. 187 صفحه.
ملکوتیان، م. و خزایی، ع. 1393. مقایسه کارایی نانو ذرات آهن صفر ظرفیتی و ترکیبات منگنزی در حذف یون کادمیم از محیطهای آبی. مجله علمی پژوهشی دانشگاه علوم پزشکی ایلام. 22(2): 93-103.
Abdus-Salam, N. and Adekola, F.A. 2005. The influence of the pH and adsorbent concentration on adsorption of Pb and zn on a natural Geothite.. African Journal of Science and Technology (AJST) Science and Engineering Series, 6(2): 55 – 66.
Bahrami, M., Boroomandnasab, S., Kashkuli, H.A., Farrokhian Firoozi, A. and Babaei, AA. 2012. Removal Of Cd(II) From Aqueous Solution Using Modified Fe3O4 Nanoparticles. Report and Opinion 4(5): 31-40.
Boparai, H.K., Joseph, M. and O'Carroll, D.M. 2010. Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. Journal of Hazardous Materials, 186(1): 458-465.
Dang, V.B.H., Doan, H.D., Dang-Vu, T. and Lohi, A. 2009. Equilibrium and kinetics of biosorption of cadmium(II) and copper(II) ions by wheat straw. Bioresource Technology, 100: 211-9.
De la Rosa, G., Reynel-Avila, H.E., Bonilla, A., Cano-Rodriguez, Z., Velasco Santos, C. and Martinez, A.L. 2008. Recycling Poultry Feathers for Pb Removal from Wastewater: Kinetic and Equilibrium Studies. World Academy of Science, Engineering and Technology, 47: 394-402.
Debnath, S. and Ghos, U.C. 2009. Nanostructured hydrous titanium(IV) oxide: Synthesis, characterization and Ni(II) adsorption behavior. Chemical Engineering Journal, 152(2): 480–491.
Gautam, R.K., Mudhoo, A., Lofrano, G. and Chattopadhyaya, M.C. 2014. Biomass-derived biosorbents for metal ions sequestration: Adsorbent modification and activation methods and adsorbent regeneration. Journal of Environmental Chemical Engineering. 2(1): 239-259.
Gupta, V.K., Gupta, M. and Sharma, S. 2001. Process Development for the Removal of Lead and Chromium from Aqueous Solution Using Red “Mud- An Aluminium Industry Waste”. Journal of Water Research, 35(5): 1125-1134.
Hossain, M.A., Hao Ngo, H., Guo, W.S. and Nguyen, T.V. 2012. Removal of copper from water by adsorption onto banana peel as bioadsorbent. International Journal of Geomate,2(2):227–234.
Kurniawan, T.A., Chan, G.Y., Lo, W.H. and Babel, S. 2006. Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals. Science of the Total Environment, 366(2): 409-426.
Langmuir, I. 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40: 1361−1367.
Luna, I.Z., Hilary, L.N., Chowdhury, A.M.S., Gafur, M.A., Khan, N. and Khan, R.A. 2015. Preparation and Characterization of Copper Oxide Nanoparticles Synthesized via Chemical Precipitation Method. Open Access Library Journal, 2(03): 1-8.
Mamindy-Pajany, Y., Hurel, C., Marmier, N. and Roméo, M. 2011. Arsenic (V) adsorption from aqueous solution onto goethite, hematite, magnetite and zero-valent iron: effects of pH, concentration and reversibility. Desalination, 28: 193-99.
Manahan, S.E. 2003. Toxicological Chemistry and Biochemistry. CRC Press, Florida, 425 pp.
Marder, L., Sulzbach, G.O., Bernardes, A.M., Ferreira, J.Z. and Braz, J. 2003. Removal of Cadmium and Cyanide from aqueous solutions through Electrodialysis. Journal of the Brazilian Chemical Society, 14(4): 610-615.
Mataka, L.M., Sajidu, S.M.I., Masamba, W.R.L. and Mwatseteza, J.F. 2010. Cadmium sorption by Moringa stenopetala and Moringa oleifera seed powders: Batch, time, temperature, pH and adsorption isotherm studies. International Journal of Water Resources and Environmental Engineering, 2(3): 50-59.
O’Carroll, D., Sleep, B., Krol, M., Boparai, H. and Kocur, C. 2013. Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Advances in Water Resources, 51: 104-122.
Rahmani, A., Zavvar Mousavi, H. and Fazli, M. 2010. Effect of nanostructure alumina on adsorption of heavy metals. Desalination, 253: 94–100.
Rashmi, S.H., Madhub, G.M., Kittura, A.A. and Sureshc, R. 2013. Synthesis, characterization and application of zero valent iron nanoparticles for the removal of toxic metal hexavalent chromium [Cr(VI)] from aqueous solution. International Journal of Current Engineering and Technology, 1: 37-42.
Reddad, Z., Gerente, C., Andres, Y., and le Cloirec, P. 2002. Adsorption of several metal ions onto a low-cost biosorbent: kinetic and equilibrium studies. Environmental Science and Technology. 36( 9): 2067–2073.
Romero-González, J., Peralta-Videa, J.R., Rodríguez, E., Delgado, M. and Gardea-Torresdey, J.L. 2006. Potential of Agave lechuguilla biomass for Cr (III) removal from aqueous solutions: Thermodynamic studies. Bioresource Technology. 97(1): 178-182.
Sengil, I.A. and Özacar, M. 2009. Competitive biosorption of Pb2+, Cu2+ and Zn2+ ions from aqueous solutions onto valonia tannin resin. Journal of Hazardous Materials, 166(2-3): 1488-1494.
Sheela, T., Nayaka, Y.A., Viswanatha, R., Basavanna, S. and Venkatesha, T.G. 2012. Kinetics and thermodynamics studies on the adsor ption of Zn(II), Cd(II) and Hg(II) from aqueous solution using zinc oxide nanoparticles. Powder Technology, 217:163–170.
Sun, J., Lian, F., Liu, Z., Zhu, L. and Song, Z. 2014. Biochars derived from various crop straws: characterization and Cd (II) removal potential. Ecotoxicology and Environmental Safety, 106: 226–231.
Taman, R., Ossman, M.E., Mansour, M.S. and Farag, H.A. 2015. .Metal Oxide Nano-particles as an Adsorbent for Removal of Heavy Metals. Journal of Advanced Chemical Engineering, 5: 3-7.
Tiller, K.G. 1989. Heavy metals in soils and their environmental significance. Advances in soil science, 9: 113- 142
Wan, Y., Wan, Z., Kamaruzaman, N. and Samsudin, A.R. 2012. Development of Nano-Zero Valent Iron for the Remediation of Contaminated Water. Italian association of chemical engineering, 28: 14-23.
Webber, T.N. and Chakravarti, R.K. 1974. Pore and Solid Diffusion Models for fixed bed adsorbers. Journal of the American Institute of Chemical Engineers, 20: 228-238.
World Health Organization, 2008. World malaria report 2008. World Health Organization.
Xu, J., Yang, L., Wang, Z., Dong, G., Huang, J. and Wang Y. 2006. Toxicity of copper on rice growth and accumulation of copper in rice grain in copper contaminated soil. Chemosphere, 62: 602-607.
Yaacob, W.Z.W., Kamaruzaman, N. and Rahim, A. 2012. Development of nano-zero valent iron for the remediation of contaminated water. Chemical Engineering, 28: 25-30.
_||_